Reactions of Adenosine with Bromo- and Chloromalonaldehydes
FULL PAPER
Swenberg, N. Fedtke, F. Ciroussel, A. Barbin, H. Bartsch, Car-
mined by using calibration curves. The sum of the concentrations
generally remained constant during the reaction. As the breakdown
of the etheno products is an acid-catalyzed process, a slight de-
crease in the total concentration (substrate ϩ etheno products) was
observed under acidic conditions.
[2d]
cinogenesis 1992, 13, 727Ϫ729. Ϫ
V. Nair, R. J. Offerman,
G. A. Turner, J. Org. Chem. 1984, 49, 4021Ϫ4025.
[3a] L. Kronberg, R. Sjöholm, S. Karlsson, Chem. Res. Toxicol.
[3]
[4]
[5]
1992, 5, 852Ϫ855. Ϫ [3b] L. Kronberg, S. Karlsson, R. Sjöholm,
[3c]
Chem. Res. Toxicol. 1993, 6, 495Ϫ499. Ϫ
D. Asplund, L.
Kronberg, R. Sjöholm, T. Munter, Chem. Res. Toxicol. 1995,
8, 841Ϫ846.
Calculation of the Rate Constants: Pseudo first order rate constants
for the reaction of adenosine (3a), 9-methyladenine (3b), N6-
methyladenosine (3c) and 1,N6-ethenoadenosine (4a) were calcu-
lated by using the integrated first-order rate law. The calculation
was based on the decrease of the concentration of the starting mat-
erial as a function of time.
[4a] A. Barbin, H. Bresil, A. Croisy, P. Jacquinon, C. Malaveille,
R. Montesano, H. Bartsch, Biochem., Biophys. Res. Commun.
1975, 67, 596Ϫ603. Ϫ [4b] C. Malaveille, H. Bartsch, A. Barbin,
A. M. Camus, R. Montesano, A. Croisy, P. Jacquinon, Bio-
chem. Biophys. Res. Commun. 1975, 63, 363Ϫ370.
N. K. Kochetkov, V. N. Shibaev, A. A. Kost, Tetrahedron Lett.
1971, 22, 1993Ϫ1996.
[6] [6a]
J. A. Secrist III, J. R. Barrio, N. J. Leonard, G. Weber,
The rate constants obtained for the disappearance of adenosine
and 9-methyladenine in the presence of BMA were divided into the
rate constants for the formation of the etheno product (4a,b) and
formyletheno product (5a,b) by Equation (1) and (2).[24] Here k1
refers to the formation of an etheno product, 4a or 4b, k2 to the
formation of a formyletheno product, 5a or 5b, k3 to the overall
disappearance of the starting material, 3a or 3b, and kd2 to the
disappearance of the etheno product.
[6b]
Biochemistry 1972, 11, 3499Ϫ3506. Ϫ
J. R. Barrio, J. A.
Secrist III, N. J. Leonard, Biochem. Biophys. Res. Commun.
1972, 46, 597Ϫ604.
[7] [7a]
J. Biernat, J. Ciesiolka, P. Gornicki, R. W. Adamiak, W.
Krzyzosiak, M. Wiewiorowski, M., Nucleic Acids Res. 1978, 5,
[7b]
789Ϫ804. Ϫ
W. J. Krzyzosiak, J. Biernat, J. Ciesiolka, P.
Gornicki, M. Wiewiorowski, Polish J. Chem. 1979, 53,
[7c]
243Ϫ252. Ϫ
W. J. Krzyzosiak, J. Biernat, J. Ciesiolka, P.
Gornicki, M. Wiewiorowski, Polish J. Chem. 1983, 57,
[7d]
779Ϫ787. Ϫ
P. D. Sattsangi, J. R. Barrio, N. J. Leonard, J.
x(4a,b) ϭ [k1/(k3Ϫkd2)] [exp(Ϫkd2t)Ϫexp(Ϫk3t)]
k3 ϭ k1 ϩ k2
(1)
(2)
Am. Chem. Soc. 1980, 102, 770Ϫ774.
[8] [8a]
F. Oesch, G. Doerjer, Carcinogenesis 1982, 3, 663Ϫ638. Ϫ
[8b]
J. T. Kusmierek, B. Singer, Chem. Res. Toxicol. 1992, 5,
[8c]
634Ϫ638. Ϫ
F. P. Guengrich, M. Persmark, Chem. Res.
With adenosine, the calculation was based on the mole fraction of
ethenoadenosine (4a) as a function of time. The rate constants for
the overall disappearance of adenosine and the disappearance of
4a were known, and the rate constant for the formation of 4a was
obtained by nonlinear fitting. In the case of 9-methyladenine (3b),
only the rate constant for the overall disappearance of the starting
material was known, and the rate constants for the formation and
disappearance of the products were obtained by fitting.
Toxicol. 1994, 7, 205Ϫ208.
[9]
C. Reichardt, K. Halbritter, Angew. Chem. 1975, 87, 124Ϫ132;
Angew. Chem. Int. Ed. Engl. 1975, 14, 86Ϫ94.
L. Kronberg, D. Asplund, J. Mäki, R. Sjöholm, Chem. Res.
Toxicol. 1996, 9, 1257Ϫ1263.
K. F. Yip, K. C. Tsou, Tetrahedron Lett. 1973, 33, 3087Ϫ3090.
K. Kayasuga-Mikado, T. Hashimoto, T. Negishi, K Negishi,
H. Hajatsu, Chem. Pharm. Bull. 1980, 28, 932Ϫ938.
A. H.-J. Wang, L. G. Dammann, J. R. Barrio, I. C. Paul, J.
Am. Chem. Soc. 1974, 96, 1205Ϫ1213.
E. K. Euranto, in The Chemistry of Carboxylic Acids and Es-
ters, S. Patai, Ed., Interscience Publishers, John Wiley & Sons
Ltd. 1969, pp. 518.
H. Lönnberg, in Biocoordination Chemistry: Coordination Equi-
libria in Biologically Active Systems, K. Burger, Ed., Ellis Hor-
wood, Chichester 1990, pp. 284Ϫ346.
[10]
[11]
[12]
[13]
[14]
Acknowledgments
˚
The authors wish to thank Dr. Kronberg (Abo Akademi Univer-
[15]
[16]
sity, Turku) for the generous gift of 1,N6-formylethenoadenosine,
and Mr. Kristo Hakala, M. Sc., for the MS analyses.
R. C. Moschel, N. J. Leonard, J. Org. Chem. 1976, 41,
294Ϫ300.
[1] [1a]
B. Singer, S. J. Spengler, F. Chavez, J. T. Kusmierek, Carci-
[17]
[18]
P. Lehikoinen, H. Lönnberg, Chem. Scripta 1986, 26, 103Ϫ108.
W. P. McCann, L. M. Hall, W. K. Nododez, Anal. Chem. 1983,
55, 1454Ϫ1455.
W. Dieckmann, L. Platz, Chem. Ber. 1904, 37, 4638Ϫ4646.
S. Trofimenko, J. Org. Chem. 1963, 28, 3243Ϫ3245.
M. Hedayatullah, J. Heterocycl. Chem. 1982, 19, 249Ϫ251.
H. Lönnberg, J. Ylikoski, J. Arpalahti, E. Ottoila, A.Vesala,
Acta Chem. Scand. 1985, A39, 171Ϫ180.
[1b]
nogenesis 1987, 8, 745Ϫ747. Ϫ
M. M. Mroczkowska, J. T.
[1c]
Kusmierek, Mutagenesis 1991, 6, 385Ϫ390. Ϫ
B. Singer, J.
T. Kusmierek, W. Folkman, F. Chavez, M. K. Dosanjh, Carci-
[19]
[20]
[21]
[22]
nogenesis 1991, 12, 745Ϫ747. Ϫ [1d] K. C. Cheng, B. D. Preston,
D. S. Cahill, M. K. Dosanjh, B. Singer, L. A. Loeb, Proc. Natl.
[1e]
Acad. Sci. U.S.A 1991, 88, 9974Ϫ9978. Ϫ
H. Bartch, A.
Barbin, M. J. Marion, J. Nair, Y. Guillard, Drug. Metab. Rev.
1994, 26, 349Ϫ371; M. Moriya, W. Zhang, F. Johnson, A. P.
[23]
[24]
Grollman, A.P., Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
J. A. Johnson Jr., H. J. Thomas, H. J. Schaeffer, J. Am. Chem.
Soc. 1958, 699.
[1f]
11899Ϫ11903. Ϫ
G. A. Pandya, M. Moriya, Biochemistry
1996, 35, 11487Ϫ11492.
N. M. Rodiguin, E. N. Rodiguina, Consecutive Chemical Reac-
tions, Van Nostrand Company Inc., New York, 1964, p. 49.
Received August 11, 1999
[2] [2a]
N. Fedtke, J. A. Boucheron, M. J. Turner Jr., J. A. Swen-
[2b]
berg, Carcinogenesis 1990, 11, 1279Ϫ1285. Ϫ
rich, F.P., Chem. Res. Toxicol. 1992, 5, 852Ϫ855. Ϫ
F. P. Gueng-
[2c]
J. A.
[O99493]
Eur. J. Org. Chem. 2000, 2315Ϫ2323
2323