C O M M U N I C A T I O N S
an R-amino acid, can be combined with a complex while retaining
affinity and transport.
We emphasize that conjugation of many other ligands such as
histidine or methionine to an R-amino acid, regardless of spacer
type, resulted in complete loss of affinity. This implied that those
conjugates were too bulky. However, the spatial orientation of the
complex relative to the receptor binding part is at least as important.
Changing the anchoring atom in 8 from the R-C to the 3-NH2 group
yields 21 (Scheme 2). The number of atoms in 21 is not changed
with respect to 8, but affinity for LAT1 is lost. Consequently, for
the successful labeling of small molecules, the ligand sizes have
to be considered but the orientation of the complex relative to the
receptor binding site is equally important.
Figure 1. ORTEP presentation of 3 and size comparison with [CpRe-
(CO)3] based on van der Waals radii.
In conclusion, we have synthesized new R-amino acid derivatives
conjugated to small tripod ligands and their fac-[Re(CO)3]+ based
complexes. They represent the first examples of small molecule-
metal complex conjugates that are actively internalized into cells
by a transporter (LAT1). In vivo studies will show if the 99mTc
analogues are sufficiently accumulated for imaging of cancer tissue.
Figure 2. Ki values and stimulated efflux of the rhenium amino acids and
reference compounds; Ki values of inhibitor with 3H-L-Phe/L-Phe as
substrate; efflux of H-L-Phe out of R1M cells after 1 min.
Acknowledgment. This research was in part supported by an
Eureka project and Mallinckrodt Medical B.V.
3
Scheme 2. Structure-Activity Relationships between 10 and 20
and 8 and 21 (8 and 21 have the same stoichiometric
composition)
Supporting Information Available: Synthetic details of Ki’s, efflux
determination, and crystallographic data for 4 in CIF format. This
References
(1) Marx, V. C&EN 2005, 83, 25-36.
(2) Banerjee, S. R.; Babich, J. W.; Zubieta, J. Inorg. Chim. Acta 2006, 359,
1603-1612.
(3) Schibli, R.; Dumas, C.; Petrig, J.; Spadola, L.; Scapozza, L.; Garcia-
Garayoa, E.; Schubiger, P. A. Bioconjugate Chem. 2005, 16, 105-112.
(4) Storr, T.; Obata, M.; Fisher, C. L.; Bayly, S. R.; Green, D. E.; Brudzinska,
I.; Mikata, Y.; Patrick, B. O.; Adam, M. J.; Yano, S.; Orvig, C. Chem.s
Eur. J. 2004, 11, 195-203.
(5) Meier, C.; Ristic, Z.; Klauser, S.; Verrey, F. EMBO J. 2002, 21, 580-
differentiate between compounds which only bind to the exterior
part of the transport system and actual substrate compounds that
are taken up.
Figure 2 shows the standard BCH substrate (17) (Ki ) 153 µM
vs L-leucine 13 or L-phe, 14). Whereas L-cysteine (18) is not a good
substrate, its S-alkylated derivatives L-cys-R might have higher (11,
R ) benzyl and 12, R ) butyl, R ) methyl 16) but also lower
affinity (R ) neopentyl, 19) than, for example, L-methionine (15).
The deduction of sar’s is difficult, but LAT1 indeed tolerates steric
changes in all spatial dimensions to different extents.
589.
(6) Ohkame, H.; Masuda, H.; Ishii, Y.; Kanai, Y. J. Surg. Oncol. 2001, 78,
265-271.
(7) Yanagida, O.; Kanai, Y.; Chairoungdua, A.; Kim, D. K.; Segawa, H.;
Nii, T.; Cha, S. H.; Matsuo, H.; Fukushima, J.; Fukasawa, Y.; Tani, Y.;
Taketani, Y.; Uchino, H.; Kim, J. Y.; Inatomi, J.; Okayasu, I.; Miyamoto,
K.; Takeda, E.; Goya, T.; Endou, H. Biochim. Biophys. Acta 2001, 1514,
291-302.
(8) Kanai, Y.; Segawa, H.; Miyamoto, K.; Uchino, H.; Takeda, E.; Endou,
H. J. Biol. Chem. 1998, 273, 23629-23632.
(9) Shikano, N.; Kanai, Y.; Kawai, K.; Ishikawa, N.; Endou, H. Nucl. Med.
Biol. 2003, 30, 31-37.
(10) Lahoutte, T.; Caveliers, V.; Camargo, S. M. R.; Franca, R.; Ramadan,
T.; Veljkovic, E.; Mertens, J.; Bossuyt, A.; Verrey, F. J. Nucl. Med. 2004,
45, 1591-1596.
The data for 8-10 show that they all exhibit affinity for LAT1
and cause efflux. Complex 8 has the highest (Ki ) 308 µM) and 9
the lowest affinity (Ki ) 5300 µM). Compound 10 is in between
(Ki ) 1100 µM). Replacing one CH2 group in 10 by a thioether
sulfur (20, Scheme 2) slightly increases Ki to 800 µM. Due to the
(11) Uchino, H.; Kanai, Y.; Kim, D. K.; Wempe, M. F.; Chairoungdua, A.;
Morimoto, E.; Anders, M. W.; Endou, H. Mol. Pharmacol. 2002, 61, 729-
737.
(12) Fuchs, B. C.; Bode, B. P. Semin. Cancer Biol. 2005, 15, 254-266.
(13) Kersemans, V.; Cornelissen, B.; Kersemans, K.; Bauwens, M.; Dierckx,
R. A.; De Spiegeleer, B.; Mertens, J.; Slegers, G. Eur. J. Nucl. Med. Mol.
I 2006, 33, 919-927.
(14) Banerjee, S. R.; Maresca, K. P.; Francesconi, L.; Valliant, J.; Babich, J.
W.; Zubieta, J. Nucl. Med. Biol. 2005, 32, 1-20.
(15) Mertens, J.; Kersemans, V.; Bauwens, M.; Joos, C.; Lahoutte, T.; Bossuyt,
A.; Slegers, G. Nucl. Med. Biol. 2004, 31, 739-746.
3
antiport LAT1 system, all compounds causing efflux of H-L-Phe
are also taken up into these cells. Competitive inhibition of the
uptake together with the coupled stimulated efflux proves that 8-10
are transported by the same LAT system as L-Phe. The example of
8 shows for the first time that a small biological moiety, such as
JA066002M
9
J. AM. CHEM. SOC. VOL. 128, NO. 50, 2006 15997