10.1002/asia.201901695
Chemistry - An Asian Journal
COMMUNICATION
[4]
Most glycosylation methods apply to this cleavage pattern; cf. C. S.
Bennett, Selective Glycosylations: Synthetic Methods and Catalysts,
Wiley-VCH, Weinheim, 2017. For selected examples, see: a) B. Szechner,
Z. Urbańczyk-Lipkowska, M. Chmielewski, Carbohydr. Res. 2010, 345,
2464–2468; b) M. A. Fernández-Herrera, H. López-Muñoz, J. M. V.
Hernández-Vázquez, M. López-Dávila, S. Mohan, M. L. Escobar-Sánchez,
L. Sánchez -Sánchez, B. M. Pinto, J. Sandoval-Ramírez, Eur. J. Med.
Chem. 2011, 46, 3877–3886; c) M. Pfaffe, R. Mahrwald, Org. Lett. 2012,
14, 792–795; d) B. Szechner, B. Furman, M. Chmielewski, Carbohydr. Res.
2013, 369, 54–57; e) A. L. M. Morotti, K. L. Lang, I. Carvalho, E. P.
Schenkel, L. S. C. Barnardes, Tetrahedron Lett. 2015, 56, 303–307.
a) P. de Armas, C. G. Francisco, E. Suárez, Angew. Chem. Int. Ed. 1992,
31, 772–774; Angew. Chem. 1992, 104, 746–748; b) C. C. González, A. R.
Kennedy, E. I. León, C. Riesco-Fagundo, E. Suárez, Angew. Chem. Int. Ed.
2001, 40, 2326–2328; Angew. Chem. 2001, 113, 2388–2390; c) A. Boto, D.
Hernández, R. Hernández, E. Álvarez, J. Org. Chem. 2007, 72, 9523–
9532; d) A. Boto, D. Hernández, R. Hernández, J. Org. Chem. 2008, 73,
5287–5297; e) C. Carro, I. Romero, A. Boto, Eur. J. Org. Chem. 2017,
373–380.
In conclusion, we have developed a novel method for the
formation of C–C bonds using carbon radicals that are generated
in-situ via the iron-catalyzed selective C–C bond cleavage of
acetal-derived alkylsilyl peroxides. The synthetic utility of this
approach has been clearly demonstrated using several types of
carbohydrate derivatives. Further investigations into our
methodology using alkylsilyl peroxides for the synthesis of various
functionalized molecules are currently in progress in our laboratory.
[5]
Experimental Section
A solution of 1,1-diphenylethene (2a, 35 μL, 0.20 mmol, 2.0 equiv) and
FeCl3 (3.2 mg, 0.020 mmol, 20 mol%) in DMSO (1.0 mL) was treated with
alkylsilyl peroxide 1a (23 mg, 0.10 mmol). After being stirred for 1 h at 80 °C
under an Ar atmosphere, the reaction mixture was cooled to room
temperature, quenched with brine and extracted five times with
hexane/EtOAc (v/v = 1/1). The combined organic layers were dried over
Na2SO4 and concentrated under reduced pressure. The residue was
analyzed by 1H-NMR spectroscopy in order to determine the NMR yield of
3aa using 1,1,2,2-tetrachloroethane (11 μL, 0.10 mmol) as the internal
standard (81% NMR yield based on 1a). The crude product was purified by
flash column chromatography on silica gel using hexane/EtOAc (v/v = 10/1)
as the eluent to afford 3aa as a colorless oil (20 mg, 72%).
[6]
a) C. G. Francisco, E. I. León, A. Martín, P. Moreno, M. S. Rodríguez, E.
Suárez, J. Org. Chem. 2001, 66, 6967–6976; b) J. Hartung, C. Schur, I.
Kempter, T. Gottwald, Tetrahedron 2010, 66, 1365–1374.
[7]
[8]
E. Ota, H. Wang, N. L. Frye, R. R. Knowles, J. Am. Chem. Soc. 2019, 141,
1457–1462.
a) R. Sakamoto, S. Sakurai, K. Maruoka, Chem, Eur. J. 2017, 23, 9030–
9033; b) R. Sakamoto, T. Kato, S. Sakurai, K. Maruoka, Org. Lett. 2018,
20, 1400–1403; c) S. Sakurai, T. Kato, R. Sakamoto, K. Maruoka,
Tetrahedron 2019, 75, 172–179; d) T. Seihara, S. Sakurai, T. Kato, R.
Sakamoto, K. Maruoka, Org. Lett. 2019, 21, 2477–2481; e) J.-C. Yang, L.
Chen, F. Yang, P. Li, L.-N. Guo, Org. Chem. Front. 2019, 6, 2792–2795; f)
P. Gao, H. Wu, J.-C. Yang, L.-N. Guo, Org. Lett. 2019, 21, 7104–7108.
S. Kyasa, P. H. Dussault, Org. Lett. 2014, 16, 5235–5237.
Acknowledgements
[9]
This work was supported by JSPS KAKENHI grants JP26220803
and JP17H06450 (Hybrid Catalysis). S.S. thanks for a Grant-in-Aid
for JSPS Fellowship for Young Scientists.
[10] For iron-catalyzed alkylations using peroxide derivatives, see: a) J.-H. Fan,
M.-B. Zhou, Y. Liu, W.-T. Wei, X.-H. Ouyang, R.-J. Song, J.-H. Li, Synlett
2014, 25, 657–660; b) Q. Dai, J.-T. Yu, X. Feng, Y. Jiang, H. Yang, J.
Cheng, Adv. Synth. Catal. 2014, 356, 3341–3346; c) Q. Dai, J. Yu, Y.
Jiang, S. Guo, H. Yang, J. Cheng, Chem. Commun. 2014, 50, 3865–3867;
d) G. Rong, D. Liu, L. Lu, H. Yan, Y. Zheng, J. Chen, J. Mao, Tetrahedron
2014, 70, 5033–5037. e) W. Jian, L. Ge, Y. Jiao, B. Qian, H. Bao, Angew.
Chem. Int. Ed. 2017, 56, 3650–3654; Angew. Chem. 2017, 129, 3704–
3708; f) B. Qian, S. Chen, T. Wang, X. Zhang, H. Bao, J. Am. Chem. Soc.
2017, 139, 13076–13082. g) N. Zhu, J. Zhao, H. Bao, Chem. Sci. 2017, 8,
2081–2085.
Keywords: iron-catalysis • C–C bond cleavage • C–C bond
formation • radical reaction • alkylsilyl peroxides • sugar derivatives
[1]
a) D. B. Werz, S. Vidal, Modern Synthetic Methods in Carbohydrate
Chemistry: From Monosaccharides to Complex Glycoconjugates, Wiley-
VCH, Weinheim, 2013; b) A. Alexakis, P. Mangeny, A. Ghribi, I. Marek, R.
Sedrani, C. Guir, J. Normant, Pure & Appl. Chem. 1988, 60, 49–56; c) F.
Sanda, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 265–276;
d) K. Motokura, T. Baba, Green Chem. 2012, 14, 565–579; e) A. M.
Ruppert, K. Weinberg, R. Palkovits, Angew. Chem., Int. Ed. 2012, 51,
2564–2601; f) A. S. Gazizov, A. R. Burilov, M. A. Pudovik, Russ. Chem.
Bull. 2016, 65, 2143–2150; g) J. Janssens, M. D. P. Risseeuw, J. V. der
Eycken, S. V. Calenbergh, Eur. J. Org. Chem. 2018, 6405–6431; h) E. Lenci,
G. Menchi, F. I. Saldivar-Gonzalez, J. L. Medina-Franco, A. Trabocchi, Org.
Biomol. Chem. 2019, 17, 1037–1052.
[11] For the use of carbohydrate-derived chiral building blocks in total synthesis,
see: a) G. Stork, S. Raucher, J. Am. Chem. Soc. 1976, 98, 1583–1584; b)
G. Stork, T. Takahashi, I. Kawamoto, T. Suzuki, J. Am. Chem. Soc. 1978,
100, 8272–8273; c) K. C. Nicolaou, R. A. Daines, J. Uenishi, W. S. Li, D. P.
Papahatjis, T. K. Chakraborty, J. Am. Chem. Soc. 1988, 110, 4672–4685;
d) P. S. Reddy, G. V. M. Sharma, Synthesis 2014, 46, 1532–1538; e) S.
Konda, B. Kurva, L. Nagarapu, A. M. Dattatray, Tetrahedron Lett. 2015, 56,
834–836; f) S. Das, C. V. Ramana, Tetrahedron 2015, 71, 8577–8584; g)
S. Ajay, P. Saidhareddy, A. K. Shaw, Synthesis 2016, 48, 1191–1196; h) Z.
Xiong, K. J. Hale, Org. Lett. 2016 18, 4254–4257; i) G. Benedeković, I.
Kovačević, M. Popsavin, J. Francuz, V. Kojić, G. Bogdanović, V. Popsavin,
Bioorg. Med. Chem. Lett. 2016, 26, 3318–3321; j) A. B. Reddy, B. K.
Swamy, J. S. Yadav, Tetrahedron: Asymmetry 2016, 27, 788–790; k) S.
Raghavendra, K. Tadiparthi, J. S. Yadav, Carbohydr. Res. 2017, 442, 17–
19; l) K. Lumyong, B. Kongkathip, N. Chuanopparat, N. Kongkathip,
Tetrahedron 2019, 75, 533–537.
[2]
[3]
For a classification of acetal compounds, see: C. D. Gabbutt, J. D.
Hepworth in Comprehensive Organic Functional Group Transformations,
Vol. 4 (Eds.: A. R. Katritzky, O. Meth-Cohn, C. W. Rees; Volume Ed.: G. W.
Kirby), Pergamon: Oxford, 1995, pp 293–349.
a) Y. Li, M. G. B. Drew, E. V. Welchman, R. K. Shirvastava, S. Jiang, R.
Valentine, G. Singh, Tetrahedron 2004, 60, 6523–6531; b) J. J. Forsman, J.
Wärnå, D. Y. Murzin, R. Leino, Eur. J. Org. Chem. 2009, 5666–5676; c) N.
Lunau, C. Meier, Eur. J. Org. Chem. 2012, 6260–6270; d) T. Sakai, H.
Asano, K. Furukawa, R. Oshima, Y. Mori, Org. Lett. 2014, 16, 2268–2271;
e) X. Hu, S. Jiang, S. Kadarwati, D. Dong, C.-Z. Li, RSC Adv. 2016, 6,
40489–40501.
[12] a) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei,
Chem. Rev. 2017, 117, 9016–9085; b) R. Shang, L. Ilies, E. Nakamura,
Chem. Rev. 2017, 117, 9086–9139.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.