Published on Web 11/18/2006
Aggregation-Mediated Optical Properties of pH-Responsive
Anionic Conjugated Polyelectrolytes
Fuke Wang and Guillermo C. Bazan*
Department of Materials and Chemistry & Biochemistry, Institute for Polymers and Organic
Solids, UniVersity of California, Santa Barbara, California 93106
Received July 16, 2006; E-mail: bazan@chem.ucsb.edu
Abstract: Conjugated polyelectrolyte copolymers containing 2,1,3-benzothiadiazole- (BT) and oligo(ethylene
oxide)-substituted fluorene and phenylene units have been designed and synthesized. The phenylene
pendent groups also have carboxylic acid functionalities, which allow probing the effect of pH on optical
properties. The BT content in the backbone can be regulated at the synthesis stage. Dynamic light scattering
studies show that polymers aggregate in water at low pH. Increased interchain contacts give rise to a
lowering of the photoluminescence (PL) efficiency via self-quenching when the BT units are absent and
increased levels of FRET from the phenylene-fluorene segments to BT. Furthermore, the PL efficiency of
BT increases in the aggregated structures. Examination of solvent effects indicates that the increased BT
efficiencies are likely due to decreased contact with water. The changes in PL efficiencies are reversible,
showing that the aggregates are dynamic and not kinetically constrained.
Introduction
signaling fluorophores attached to biomolecular probes, thereby
providing signal intensities above those of single-molecule
The delocalized electronic structure of π-conjugated polymers
allows for effective coupling between optoelectronic segments.1
Properties such as charge transport,2 conductivity,3 emission
efficiency,4 and exciton migration2 are easily perturbed by
external agents, leading to large changes in measurable signals.5
Trace detection of analytes has been successfully accomplished
by making use of these amplification mechanisms.4,6,7 Conju-
gated polyelectrolytes (CPs) are conjugated polymers with
pendent functionalities capable of ionizing in high dielectric
media. Their solubility in water makes them appropriate for
interrogation of biological targets in aqueous media.4,7,8 These
water-soluble materials have been used as light-harvesting
molecules that deliver excitations upon recognition events to
reporters.5,9 Nonspecific contacts between nontarget species and
the hydrophobic CP backbone are complex and need special
attention for attaining selectivity as these interactions can easily
lead to misinterpretation of results.10
Differences in the efficiencies of intra- and interchain Fo¨rster
resonance energy transfer (FRET) have been used to design CPs
with optical signatures that are sensitive to DNA concentration.11
Interchain FRET is more effective as a result of more effective
(6) (a) Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864. (b)
Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321. (c) Leclerc,
M. AdV. Mater. 1999, 11, 1491. (d) McQuade, D. T.; Pullen, A. E.; Swager,
T. M. Chem. ReV. 2000, 100, 2537. (e) Ewbank, P. C.; Nuding, G.; Suenaga,
H.; McCullough, R. D.; Shinkai, S. Tetrahedron Lett. 2001, 42, 155. (f)
Ho, H. A.; Boissinot, M.; Bergeron, M. G.; Corbeil, G.; Dore´, K.; Boudreau,
D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548. (g) Kim, I. B.;
Erdogan, B.; Wilson, J. N.; Bunz, U. H. F. Eur. J. Chem. 2004, 10, 6247.
(h) Rose, A; Zhu, Z. G.; Madigan, C. F.; Swager, T. M.; Bulovic, V. Nature
2005, 434, 876. (i) Kim, I. B.; Dunkhorst, A.; Gilbert, J.; Bunz, U. H. F.
Macromolecules 2005, 38, 4560. (j) Kim, I. B.; Wilson, J. N.; Bunz, U. H.
F. Chem. Commun. 2005, 10, 1273.
(7) (a) DiCesare, N.; Pinto, M. R.; Schanze, K. S.; Lakowicz, J. R. Langmuir
2002, 18, 7785. (b) Liu, B.; Bazan, G. C. Chem. Mater. 2004, 16, 4467.
(c) Leclerc, M.; Ho, H. A. Synlett 2004, 2, 380. (d) Le Floch, F.; Ho, H.
A.; Harding, L. P.; Bedard, M.; Neagu, P. R.; Leclerc, M. AdV. Mater.
2005, 17, 1251. (e) Ho, H. A.; Bers-Aberem, M.; Leclerc, M. Eur. J. Chem.
2005, 11, 1718. (f) Nilsson, K. P. R.; Ingana¨s, O. Nat. Mater. 2003, 2,
419. (g) Nilsson, K. P. R.; Olsson, J. D. M.; Stabo-Eeg, F.; Lindgren, M.;
Konradsson, P.; Ingana¨s, O. Macromolecules 2005, 38, 6813. (h) Herland,
A.; Nilsson, K. P. R.; Olsson, J. D. M.; Hammarstrom, P.; Konradsson, P.;
Ingana¨s, O. J. Am. Chem. Soc. 2005, 127, 2317.
(8) (a) Pinto, M. R.; Schanze, K. S. Synthesis-Stuttgart 2002, 9, 1293. (b) Traser,
S.; Wittmeyer, P.; Rehahn, M. e-polymer 2002, 032.
(9) (a) McQuade, D. T.; Hegedus, A. H.; Swager, T. M. J. Am. Chem. Soc.
2000, 122, 12389. (b) Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 10954. (c) Kim, T. H.; Swager, T. M.
Angew. Chem. Int. Ed. 2003, 42, 4803. (d) Gaylord, B. S.; Heeger, A. J.;
Bazan, G. C. J. Am. Chem. Soc. 2003, 125, 896.
(10) Dwight, S. J.; Gaylord, B. S.; Hong, J. W.; Bazan, G. C. J. Am. Chem.
Soc. 2004, 126, 16850.
(11) Hong, J. W.; Henme, W. L.; Keller, G. E.; Rinke, M. T.; Bazan, G. C.
AdV. Mater. 2006, 18, 878.
(1) (a) Guillet, J. E. Polymer Photophysics and Photochemistry, Cambridge
University Press: Cambridge, 1985. (b) Weber, S. E. Chem. ReV. 1990,
90, 1469. (c) Kauffmann, H. F. Photochemistry and Photophysics; Radek,
J. E., Ed.; CRC: Boca Raton, 1990; Vol 2. (d) Scholes, G. D.; Ghiggino,
K. P. J. Chem. Phys. 1994, 101, 1251. (e) Tasch, S.; List, E. J. W.;
Hochfilzer, C.; Leising, G.; Schlichting, P.; Rohr, U.; Geerts, Y.; Scherf,
U.; Mullen, K. Phys. ReV. B 1997, 56, 4479. (f) Nguyen, T. Q.; Wu, J. J.;
Doan, V.; Schwartz, B. J.; Tolbert, S. H. Science 2000, 288, 652. (g)
Pschirer, N. G.; Byrd, K.; Bunz, U. H. F. Macromolecules 2001, 34, 8590.
(h) Beljonne, D.; Pourtois, G.; Silva, C.; Hennebicq, E.; Herz, L. M.; Friend,
R. H.; Scholes, G. D.; Setayesh, S.; Mu¨llen, K.; Bre´das, J. L. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 10982. (i) Liu, B.; Wang, S.; Bazan, G. C.;
Mikhailovsky, A. J. Am. Chem. Soc. 2003, 125, 13306. (j) Liu, B.; Bazan,
G. C. J. Am. Chem. Soc. 2004, 126, 1942.
(2) Lee, D. W.; Swager, T. M. Synlett 2004, 149.
(3) (a) Korri, Y. H.; Garnier, F.; Srivastava, P.; Godillot, P.; Yassar, A. J. Am.
Chem. Soc. 1997, 119, 7388. (b) Ba¨uerle, P.; Emge, A. AdV. Mater. 1998,
10, 324. (c) Garnier, F.; Korri, Y. H.; Srivastava, P.; Mandrand, B.; Delair,
T. Synth. Met. 1999, 100, 89. (d) Korri. Y. H.; Yassar, A. Biomacromol-
ecules 2001, 2, 58.
(4) (a) Chen, L.; McBranch, D. W.; Wang, H.; Helgeson, R.; Wudl, F.; Whitten,
D. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287. (b) Kumaraswamy, S.;
Bergstedt, T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W. S.; Ley, K.;
Achyuthan, K.; McBranch, D.; Whitten, D. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 7511. (c) Pinto, M. R.; Schanze, K. S. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 7505.
(5) Swager, T. M. Acc. Chem. Res. 1998, 31, 201.
9
15786
J. AM. CHEM. SOC. 2006, 128, 15786-15792
10.1021/ja065061x CCC: $33.50 © 2006 American Chemical Society