X. Zheng et al. / Tetrahedron Letters 47 (2006) 9083–9087
9087
7. Wurthner, F. Chem. Commun. 2004, 1564–1579, and
references therein.
8. Wurthner, F.; Thalacker, C.; Sautter, A.; Schartl, W.;
¨
¨
tion and fluorescence spectra of the perylene diimide–
spacer–perylene diimide in the presence of Ca2+. Supple-
mentary data associated with this article can be found,
Ibach, W.; Hollricher, O. Chem. Eur. J. 2000, 6, 3871–
3886.
9. (a) Wang, W.; Han, J. J.; Wang, L.-Q.; Li, L.-S.; Shaw, W.
J.; Li, A. D. Q. Nano Lett. 2003, 3, 455–458; (b) Wang,
W.; Li, L.-S.; Helms, G.; Zhou, H.-H.; Li, A. D. Q. J. Am.
Chem. Soc. 2003, 125, 1120–1121; (c) Yan, P.; Chowdh-
ury, A.; Holman, M. W.; Adams, D. M. J. Phys. Chem. B
2005, 109, 724–730; (d) Gesquiere, A. J.; Uwada, T.;
Asahi, T.; Masuhara, H.; Barbara, P. F. Nano Lett. 2005,
5, 1321–1325.
References and notes
1. (a) Zollinger, H. Color Chemistry, Synthesis, Properties,
and Applications of Organic Dyes and Pigments, 3rd ed.;
Wiley-VCH: Weinheim, 2003; (b) Herbst, W.; Hunger, K.
Industrial Organic Pigments: Production, Properties, Appli-
cations, 2nd ed.; Wiley-VCH: Weinheim, 1997.
10. Baran, P. S.; Monaco, R. R.; Khan, A. U.; Schuster,
D. I.; Wilson, S. R. J. Am. Chem. Soc. 1997, 119,
8363–8364.
11. (a) Jia, C.; Zhang, D.; Xu, W.; Zhu, D. Org. Lett. 2001, 3,
1941–1944; (b) Jia, C.; Zhang, D.; Guo, X.; Wan, S.; Xu,
W.; Zhu, D. Synthesis 2002, 15, 217.
12. Ouchi, M.; Inoue, Y.; Liu, Y.; Nagamune, S.; Nakamura,
S. Bull. Chem. Soc. Jpn. 1990, 63, 1260–1262.
13. Svedhem, S.; Hollander, C.-A.; Shi, J.; Konradsson, P.;
Liedberg, B.; Svensson, S. C. T. J. Org. Chem. 2001, 66,
4494–4503.
2. (a) Law, K.-Y. Chem. Rev. 1993, 93, 449–486; (b) Schmidt-
Mende, L.; Fechtenhotter, A.; Mullen, K.; Moons, E.;
¨
Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119–
1122; (c) Yskimov, A.; Forrest, S. R. Appl. Phys. Lett.
2002, 80, 1667–1669; (d) Ren, J.; Wang, Q.; Qu, D.; Zhao,
X.; Tian, H. Chem. Lett. 2004, 33, 974–975; (e) Ren, J.;
Zhao, X.; Wang, Q.; Ku, C.; Qu, D.; Chang, C.; Tian, H.
Dyes Pigments 2005, 64, 193–200.
3. (a) Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; van
Dijk, M.; Kimkes, P.; Koehorst, R. B. M.; Donker, H.;
Schaafsma, T. J.; Picken, S. J.; van de Craats, A. M.;
Warman, J. M.; Zuihof, H.; Sudholter, E. J. R. J. Am.
Chem. Soc. 2000, 122, 11057–11066; (b) Dimitrakopoulos,
C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99–117;
(c) Lee, S. K.; Zu, Y. B.; Herrmann, A.; Geerts, Y.;
14. Adachi, M.; Murata, Y.; Nakamura, S. J. Phys. Chem.
1995, 99, 14240–14246.
15. Based on the plot of 1/(A À Ao) versus the reciprocal of
[Ca2+], where A and Ao refer to the absorbance at 540 nm
in the presence and absence of Ca2+, respectively, the
binding constant of dyad 1 with Ca2+ was estimated to be
9.5 · 103. The free binding energy was calculated to be
Mullen, K.; Bard, A. J. J. Am. Chem. Soc. 1999, 121,
¨
3513–3520; (d) Quante, H.; Mullen, K. Angew. Chem., Int.
¨
Ed. Engl. 1995, 34, 1323–1325; (e) Wurthner, F. Angew.
¨
À22.69 kJ molÀ1
.
Chem., Int. Ed. 2001, 40, 1037–1039.
16. The binding constants of compound 2 with Ca2+ was
estimated to be 1.02 · 104. The free binding energy was
4. Guo, X.; Zhang, D.; Zhang, H.; Fan, Q.; Xu, W.; Ai, X.;
Fan, L.; Zhu, D. Tetrahedron 2003, 59, 4843–4850.
5. Leroy-Lhez, S.; Baffreau, J.; Perrin, L.; Levillain, E.;
Allain, M.; Blesa, M.-J.; Hudlhomme, P. J. Org. Chem.
2005, 70, 6313–6320.
6. Balakrishnam, K.; Datar, A.; Naddo, T.; Huang, J.;
Oitker, R.; Yen, M.; Zhao, J.; Zang, L. J. Am. Chem. Soc.
2006, 128, 7390–7398.
calculated to be À22.87 kJ molÀ1
.
17. Since the absorption bands are bathochromically shifted,
J-aggregates are assumed to be formed for dyad 1 in the
presence of Ca2+
.
18. Rybtchinski, B.; Sinks, L. E.; Wasielewaski, M. R. J.
Phys. Chem. A 2004, 108, 7497–7505.