Journal of the American Chemical Society
Communication
formation of aryl chloride 29-Cl, likely the result of reductive
elimination from 35 and consistent with halogen exchange
experiments.22
AUTHOR INFORMATION
Corresponding Author
■
We recognize this system operates in a distinct ligand field
from the recently reported Ni(III) trihalide complexes.9,10
Though the structure of the proposed Ni(III) intermediate is
unknown, preliminary DFT studies suggest that photoelimina-
tion even from a distorted square planar Ni(III) complex is
feasible (see SI for computational studies). The calculated
absorption spectrum for four coordinate [Ni(dtbbpy)(Ph)Cl]+
shows high-energy features (∼400−500 nm) that arise from Ni−
Taken together with the computed Ni−Cl bond dissociation free
energy of 47 kcal mol−1, these states are expected to be
dissociative.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by NIGMS (R01 GM100985).
We thank Kevin Wu, Marherita Maiuri, Daniel Oblinsky, Andrew
Proppe, Hilary Shi, and Robert Knowles for helpful discussions.
́ ́
We thank Mate Bezdek of the Chirik laboratory for the kind
donation of FcBArF4 and Eric Webb for the preparation of 30-I.
The authors thank G. Molander and co-workers for graciously
offering to concurrently publish a related study.
Overall, these preliminary studies are consistent with a
mechanism in which photolysis of a Ni(III) aryl chloride
intermediate, generated by single-electron oxidation, leads to
elimination of a chlorine radical capable of activating C(sp3)−H
bonds by abstraction. Chlorine radicals are known to form
stabilized adducts with aromatic functional groups.9,10 Therefore,
we reasoned that if benzene were utilized as a solvent, we could
promote the desired photoelimination and simultaneously
prevent competitive solvent C(sp3)−H abstraction. We
recognized that the ability to use an inert solvent and limiting
C−H coupling partner would be highly desirable, facilitating the
application of this manifold to a broad range of C−H coupling
partners under general reaction conditions. Gratifyingly, with
benzene as a solvent, the α-arylation reaction could be carried out
with only 10 equiv of THF to give 16 in 71% yield, a 30-fold
reduction in THF (Figure 5; see Table S3 for experiments with 1
REFERENCES
■
(1) Fokin, A. A.; Schreiner, P. R. Chem. Rev. 2002, 102, 1551−1594.
(2) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part A:
Structure and Mechanisms; Springer: New York, 2007; 965−1063.
(3) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509,
299−309.
(4) Ananikov, V. P. ACS Catal. 2015, 5, 1964−1971.
(5) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345,
433−436. (b) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767−1775.
(c) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.;
Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem.
Soc. 2016, 138, 2174−2177. (d) Shaw, M. H.; Twilton, J.; MacMillan, D.
W. C. J. Org. Chem. 2016, 81, 6898−6926.
(6) (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.;
MacMillan, D. W. C. Science 2014, 345, 437−440. (b) Joe, C. L.; Doyle,
A. G. Angew. Chem., Int. Ed. 2016, 55, 4040−4043. (c) Ahneman, D. T.;
(7) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.;
MacMillan, D. W. C. Science 2016, 352, 1304−1308.
(8) Esswein, A. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022−4047.
(9) Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R.
G.; Zheng, S. L.; Chen, S.; Nocera, D. G. J. Am. Chem. Soc. 2015, 137,
6472−6475.
(10) Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt,
R. G.; Nocera, D. G. Organometallics 2015, 34, 4766−4774.
(11) Isse, A. A.; Lin, C. Y.; Coote, M. L.; Gennaro, A. J. Phys. Chem. B
2011, 115, 678−684.
Figure 5. Preliminary demonstration of reaction generality. aYield
determined by 1H NMR using 1-fluoronaphthalene as an external
standard. Reaction was carried out using toluene as a solvent. Yield
determined by GC-FID using 1-fluoronaphthalene as an external
standard.
(12) (a) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52,
4453−4456. (b) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2014, 136, 626−629.
b
c
(13) Luca, O. R.; Gustafson, J. L.; Maddox, S. M.; Fenwick, A. Q.;
Smith, D. C. Org. Chem. Front. 2015, 2, 823−848.
(14) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.;
Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712−5719.
(15) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv.
Drug Delivery Rev. 1997, 23, 3−25.
and 5 equiv of THF). In addition, the benzylic C(sp3)−H
arylation of toluene could be carried out to give 38 in 60%
unoptimized yield. We were also pleased to find that employing
benzene as solvent, C(sp3)−H arylation of the unactivated
alkane cyclohexane could be accomplished to give 39 in 41%
unoptimized yield. These demonstrations highlight the ability of
this novel reaction platform to accomplish C(sp3)−H function-
alization under mild conditions, enabled by catalytic access to the
chemistry of chlorine radicals.
(16) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319−6332.
(17) Scaiano, J. C.; Stewart, L. C. J. Am. Chem. Soc. 1983, 105, 3609−
3614.
(18) Tsou, T. T.; Kochi, J. K. J. Org. Chem. 1980, 45, 1930−1937.
(19) Sheppard, T. D. Org. Biomol. Chem. 2009, 7, 1043−1052.
(20) Preliminary studies suggest that Ni, the Ir catalyst, and light are all
(21) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877−910.
(22) Zheng, B.; Tang, F.; Luo, J.; Schultz, J. W.; Rath, N. P.; Mirica, L.
M. J. Am. Chem. Soc. 2014, 136, 6499−6504.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Procedures, experimental data, emission quenching data
and statistics, computational data, and spectroscopic data,
including Tables S1−S18 and Figures S1−S39 (PDF)
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX