J. J. Caldwell et al. / Tetrahedron Letters 48 (2007) 1527–1529
1529
In most cases, moderate to good yields of the required
References and notes
4-amino-7-azaindoles 7a–g were obtained after ion
exchange and/or chromatographic purification. Substi-
tuted piperidines, pyrrolidine and less nucleophilic cyclic
amines such as morpholine and N-methylpiperazine
were effectively incorporated. No significant differences
were observed in the yields for conversion of 1, 2 or 4,
but lower temperature and shorter reaction times were
adequate for the reaction of fluorides 2 and 4. In the
case of the reaction of morpholine with 4, a good yield
of 7a was obtained using only 2 equiv of the amine.
However, this did not translate to the reaction of 4-benz-
ylpiperidine to give 7e, where 5 equiv of the amine were
necessary. The reaction of 1 with morpholine was un-
affected by the inclusion or omission of triethylamine.
The reaction of Boc-protected piperazine with 4 was
attempted to investigate if the method was compatible
with this temperature-labile protecting group, and low
but reproducible yields of the N-Boc-protected 4-piper-
azinyl-7-azaindole were obtained. Although compounds
7a–g are structurally simple, with the exception of 7g24
this is to our knowledge the first time their synthesis
has been described.
1. Bignan, G. C.; Battista, K.; Connolly, P. J.; Orsini, M. J.;
Liu, J.; Middleton, S. A.; Reitz, A. B. Bioorg. Med. Chem.
Lett. 2006, 16, 3524–3528.
2. Wang, X.; Zhi, B.; Baum, J.; Chen, Y.; Crockett, R.;
Huang, L.; Eisenberg, S.; Ng, J.; Larsen, R.; Martinelli,
M.; Reider, P. J. Org. Chem. 2006, 71, 4021–4023.
3. O’Neill, D. J.; Shen, L.; Prouty, C.; Conway, B. R.;
Westover, L.; Xu, J. Z.; Zhang, H.; Maryanoff, B. E.;
Murray, W. V.; Demarest, K. T.; Kuo, G. Bioorg. Med.
Chem. 2004, 12, 3167–3185.
4. Wang, T.; Zhang, Z.; Wallace, O. B.; Deshpande, M.;
Fang, H.; Yang, Z.; Zadjura, L. M.; Tweedie, D. L.;
Huang, S.; Zhao, F.; Ranadive, S.; Robinson, B. S.;
Gong, Y.; Ricarrdi, K.; Spicer, T. P.; Deminie, C.; Rose,
R.; Wang, H. H.; Blair, W. S.; Shi, P.; Lin, P.; Colonno,
R. J.; Meanwell, N. A. J. Med. Chem. 2003, 46, 4236–
4239.
5. Mewshaw, R. E.; Meagher, K. L.; Zhou, P.; Zhou, D.;
Shi, X.; Scerni, R.; Smith, D.; Schechter, L. E.; Andree, T.
H. Bioorg. Med. Chem. Lett. 2002, 12, 307–310.
6. Merour, J.; Joseph, B. Curr. Org. Chem. 2001, 5, 471–506,
and references cited therein.
7. Ishizaki, T.; Uehata, M.; Tamechika, I.; Keel, J.; Nono-
mura, K.; Maekawa, M.; Narumiya, S. Mol. Pharmacol.
2000, 57, 976–983.
8. Henry, J. R.; Rupert, K. C.; Dodd, J. H.; Turchi, I. J.;
Wadsworth, S. A.; Cavender, D. E.; Fahmy, B.; Olini, G.
C.; Davis, J. E.; Pellegrino-Gensey, J. L.; Schafer, P. H.;
Siekierka, J. J. J. Med. Chem. 1998, 41, 4196–4198.
9. Girgis, N. S.; Larson, S. B.; Robins, R. K.; Cottam, H. B.
J. Heterocycl. Chem. 1989, 26, 317–325.
In conclusion, a straightforward and rapid synthesis of
4-(cyclic dialkyl)amino-7-azaindoles was demonstrated
through the displacement of 4-chloro and 4-fluoro
leaving groups with cyclic secondary amines under
microwave heating. An alternative synthesis of 4-flu-
oro-7-azaindole was developed based on the transhalo-
genation of 4-chloro-7-azaindole to 4-iodo-7-azaindole
and subsequent metalation–electrophilic fluorination.
10. Cheng, C.; Chang, C.; Yu, W.; Hung, F.; Liu, Y.;
Wu, G.; Chou, P. J. Phys. Chem. A 2003, 107, 1459–
1471.
11. Thutewohl, M.; Schirok, H.; Bennabi, S.; Figueroa-Perez,
S. Synthesis 2006, 629–632.
3. Representative experimental procedure
12. Thibault, C.; L’Heureux, A.; Bhide, R. S.; Ruel, R. Org.
Lett. 2003, 5, 5023–5025.
13. Smith, M. B.; March, J. In March’s Advanced Organic
Chemistry, 5th ed.; Wiley-Interscience: New York, 2001; p
860.
14. Kappe, C. O.; Dallinger, D. Nature Rev. Drug Discovery
2006, 5, 51–63.
15. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–
6284.
16. Wu, T. Y. H.; Schultz, P. G.; Ding, S. Org. Lett. 2003, 5,
3587–3590.
17. Cherng, Y.-J. Tetrahedron 2002, 58, 887–890.
18. Cherng, Y.-J. Tetrahedron 2002, 58, 1125–1129.
19. Lennox, J. R.; Turner, S. C.; Rapoport, H. J. Org. Chem.
2001, 66, 7078–7083.
A solution of 2 (0.020 g, 0.153 mmol), morpholine
(0.080 mL, 0.915 mmol) and Et3N (0.128 mL, 0.915
mmol) in NMP (0.5 mL) was heated in a Biotage Initia-
tor 60 microwave reactor at 160 °C for 2 h. Purification
by ion exchange on an SCX-2 Isolute column, eluting
with MeOH then 2 M NH3–MeOH, followed by pre-
parative TLC (EtOAc) gave 7a (0.019 g, 0.094 mmol,
1
61%). H NMR (500 MHz, CDCl3) d 3.48–3.50 (4H,
m), 3.93–3.95 (4H, m), 6.46 (1H, d, J 5.5 Hz), 6.49
(1H, d, J 3.5 Hz), 7.22 (1H, d, J 3.5 Hz), 8.15 (1H, d,
J 5.5 Hz), 10.40 (1H, br, s); 13C NMR (125 MHz,
CDCl3) d 49.7, 66.8, 100.1, 101.8, 110.5, 121.9, 144.1,
150.1, 151.7; m/z (ES+) 204 (M+H+).
20. Chessa, G.; Canovese, L.; Visentin, F.; Santo, C.; Seraglia,
R. Tetrahedron 2005, 61, 1755–1763.
21. Allegretti, M.; Arcadi, A.; Marinelli, F.; Nicolina, L.
Synlett 2001, 609–612.
Acknowledgements
22. L’Heureux, A.; Thibault, C.; Ruel, R. Tetrahedron Lett.
2004, 45, 2317–2319.
23. Desai, P. B. J. Chem Soc., Perkin Trans. 1 1973, 1865–
1866.
24. Ahmed, M.; Bromidge, S. PCT Intl. Pat. Appl. WO
066632, 2003; Chem. Abstr. 2003, 139, 164812.
We thank Dr. T. McHardy for preliminary experiments
on the reactivity of 1. This work was supported by Can-
cer Research UK [CUK] Grant No. C309/A2187. Addi-
tional funding was received from Astex Therapeutics
Ltd (J.J.C.).