Molecules 2019, 24, 2814
11 of 12
Acknowledgments: The authors thank the MMBio project for PhD fellowships to JC and SZ.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
2.
3.
4.
5.
6.
Palermo, G.; Cavalli, A.; Klein, M.; Alfonso-Prieto, M.; Peraro, M.; Vivo, M. Catalytic Metal Ions and
Enzymatic Processing of DNA and RNA. Accounts Chem. Res. 2015, 48, 220–228.
Mancin, F.; Scrimin, P.; Tecilla, P. Progress in artificial metallonucleases. Chem. Commun. 2012, 48, 5545–
5559.
Diez-Castellnou, M., Martinez, A., Mancin, F. Phosphate Ester Hydrolysis: The Path From Mechanistic
Investigation to the Realization of Artificial Enzymes. Ad. Phys. Org. Chem. 2017, 51, 129–186.
Wolfenden, R. Benchmark Reaction Rates, the Stability of Biological Molecules in Water, and the Evolution
of Catalytic Power in Enzymes. Annu. Rev. Biochem. 2011, 80, 645–667.
Yatsimirsky, A. Metal ion catalysis in acyl and phosphoryl transfer: Transition states as ligands. Coordin
Chem. Rev. 2005, 249, 1997–2011.
Tirel, E.; Bellamy, Z.; Adams, H.; Lebrun, V.; Duarte, F.; Williams, N. Catalytic Zinc Complexes for
Phosphate Diester Hydrolysis. Angew. Chem. Int. Ed. 2014, 53, 8246–8250.
7.
8.
Dupureur, C. Roles of metal ions in nucleases. Curr. Opin. Chem. Biol. 2008, 12, 250–255.
Manea, F.; Houillon, F.B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based
transphosphorylation catalysts. Angew. Chem. Int. Ed. Engl. 2004, 43, 6165–6169.
Mancin, F.; Prins, L.; Pengo, P.; Pasquato, L.; Tecilla, P.; Scrimin, P. Hydrolytic Metallo-Nanozymes: From
Micelles and Vesicles to Gold Nanoparticles. Molecules 2016, 21, 1014.
9.
10. Bonomi, R.; Selvestrel, F.; Lombardo, V.; Sissi, C.; Polizzi, S.; Mancin, F.; Tonellato, U.; Scrimin, P.
Phosphate Diester and DNA Hydrolysis by a Multivalent, Nanoparticle-Based Catalyst. J. Am. Chem. Soc.
2008, 130, 15744–15745.
11. Martin, M.; Manea, F.; Fiammengo, R.; Prins, L.J.; Pasquato, L.; Scrimin, P. Metallodendrimers as
transphosphorylation catalysts. J. Am. Chem. Soc.2007, 129, 6982–6983.
12. Knight, A.; Nita, R.; Moore, M.; Zabetakis, D.; Khandelwal, M.; Martin, B.; Fontana, J.; Goldberg, E.; Funk,
A.; Chang, E.; et al. Surface plasmon resonance promotion of homogeneous catalysis using a gold
nanoparticle platform. J. Nanopart Res. 2014, 16, 2400.
13. Khulbe, K.; Roy, P.; Radhakrishnan, A.; Mugesh, G. An Unusual Two-Step Hydrolysis of Nerve Agents by
a Nanozyme. Chemcatchem 2018, 10, 4826–4831.
14. Zhang, Z.; Fu, Q.; Li, X.; Huang, X.; Xu, J.; Shen, J.; Liu, J. Self-assembled gold nanocrystal micelles act as
an excellent artificial nanozyme with ribonuclease activity. J. Biol. Inorg. Chem. 2009, 14, 653–662.
15. Zhang, Z.; Yu, X.; Fong, L.; Margerum, L. Ligand effects on the phosphoesterase activity of Co(II) Schiff
base complexes built on PAMAM dendrimers. Inorg. Chim. Acta 2001, 317, 72–80.
16. Bazzicalupi, C.; Bianchi, A.; Giorgi, C.; Valtancoli, B. Zn(II) enhances nucleotide binding and
dephosphorylation in the presence of a poly(ethylene imine) dendrimer. Inorg. Chim. Acta 2014, 417, 163–
170.
17. Bonomi, R.; Scrimin, P.; Mancin, F. Phosphate diesters cleavage mediated by Ce(IV) complexes self-
assembled on gold nanoparticles Org. Biomol. Chem. 2010, 8, 2622–2626.
18. Williams, N.H., Takasaki, B., Wall, M., Chin, J., Structure and Nuclease Activity of Simple Dinuclear Metal
Complexes: Quantitative Dissection of the Role of Metal Ions. Acc. Chem. Res. 1999, 32, 485–493.
19. Brown, R.S., Bio-inspired approaches to accelerating metal ion-promoted reactions: Enzyme-like rates for
metal ion mediated phosphoryl and acyl transfer processes. Pure Appl. Chem. 2015, 87, 601–614.
20. Diez-Castellnou, M.; Mancin, F.; Scrimin, P. Efficient phosphodiester cleaving nanozymes resulting from
multivalency and local medium polarity control. J. Am. Chem. Soc. 2014, 136, 1158–1161.
21. Scrimin, P., D’Angeli, F., Veronese, A.C., Phase-Transfer-Catalyzed Reactions of a-Haloalmides: Synthesis
of a-Lactams. Synthesis 1982, 1982, 586–587.
22. Lohman, D.; Edwards, D.; Wolfenden, R. Catalysis by desolvation: The catalytic prowess of SAM-
dependent halide-alkylating enzymes. J. Am. Chem Soc. 2013, 135, 14473–14475.
23. Luo, Z.; Hou, J.; Menin, L.; Ong, Q.; Stellacci, F. Evolution of the Ligand Shell Morphology during Ligand
Exchange Reactions on Gold Nanoparticles. Angew. Chem. Int. Ed. 2017, 56, 13521–13525.
24. Ong, Q.; Nianias, N.; Stellacci, F. A review of molecular phase separation in binary self-assembled
monolayers of thiols on gold surfaces. Epl. Europhys. Lett. 2017, 119, 66001.