Page 3 of 3
ChemComm
L. J. Goonβen, N. Rodríguez and K. Gooβenn, Angew. Chem. Int.
Ed., 2008, 47, 3100.
Reaction of ((methylsulfonyl)ethynyl)benzene (2u) with 1a
was attempted under the standard conditions, and the target
product (3a) was obtained in 66% yield (Scheme 3).
3
DOI: 10.1039/C6CC04386K
55
60
Thesen, M. D. Bailey and F. Bilodeau, J. Am. Chem. Soc., 2006, 128,
11350; (c) A. Maehara, H. Tsurugi, T. Satoh and M. Miura, Org.
Lett., 2008, 10, 1159; (d) P. Hu, J. Kan, W. Su and M. Hong, Org.
Lett., 2009, 11, 2341.
D. K. Rayabarapu and J. A. Tunge, J. Am. Chem. Soc., 2005, 127,
13510.
(a) L. J. Gooβen, G. Deng and L. M. Levy, Science, 2006, 313, 662;
(b) L. J. Gooβen, N. Rodríguez, B. Melzer, C. Linder, G. Deng and L.
M. Levy, J. Am. Chem. Soc., 2007, 129, 4824; (c) G. Hu, Y. Gao, Y.
Zhao, Org. Lett., 2014, 16, 4464.
We attempted 1-(oct-1-ynylsulfonyl)benzene (4) as the
radical accepter under the standard conditions. Unfortunately,
visible-light photoredox decarboxylative coupling of 1a with 4
5
4
5
gave
poor
yield
(Scheme
4a),
so
1-(2-
alkylethynylsulfonyl)benzenes are not good substrates. Further,
visible-light photoredox decarboxylative coupling of pimelic acid
10 active ester (6) with 2a was performed, and six-membered cycle
7 and internal alkyne 8 were obtained in 31% and 13% yields,
respectively (Scheme 4b).
65 6 (a) A. Voutchkova, A. Coplin, N. E. Leadbeater and R. H. Crabtree,
Chem. Commun., 2008, 6312; (b) C. Wang, I. Piel and F. Glorius, J.
Am. Chem. Soc., 2009, 131, 4194; (c) L. J. Goonβen, N. Rodríguez,
P. P. Lange and C. Linder, Angew. Chem. Int. Ed., 2010, 49, 1111.
OPht
O
O
S
[Ru(bpy)3Cl2], DIPEA
HE, DCM, RT, Ar, 4 h
Ph
O
O
(a)
+
40 W CFL
7
For selected reviews and books on visible-light photoredox catalysis,
see: (a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322; (b) T. P. Yoon, M. A. Ischay and J. Du, Nat.
Chem., 2010, 2, 527; (c) J. M. R. Narayanam and C. R. J.
Stephenson, Chem. Soc. Rev., 2011, 40, 102; (d) J. W. Tucker and C.
R. J. Stephenson, J. Org. Chem., 2012, 77, 1617; (e) K. Zeitler,
Angew. Chem. Int. Ed., 2009, 48, 9785; (f) L. Shi and W. Xia, Chem.
Soc. Rev., 2012, 41, 7687; (g) J. Xuan and W.-J. Xiao, Angew. Chem.
Int. Ed., 2012, 51, 6828; (h) D. P. Hari and B. König, Angew. Chem.
Int. Ed., 2013, 52, 4734; (i) Y. Xi, H. Yi and A. Lei, Org. Biomol.
Chem., 2013, 11, 2387; (j) Chemical Photocatalysis (Ed.: B. König),
De Gruyter, Stuttgart, 2013.
J. Xuan, Z.-G. Zhang and W.-J. Xiao, Angew. Chem. Int. Ed., 2015,
54, 15632.
Using carboxylic peroxides acids as the radical precursors, see: D. A.
DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway and M.
Tudge, Angew. Chem. Int. Ed., 2014, 53, 4802.
4
OPht
5 (18% yield)
70
75
80
1a
O
O
S
7 (31% yield)
[Ru(bpy)3Cl2], DIPEA
HE, DCM, RT, Ar, 4 h
Ph
(b)
COOPht
COOPht
+
+
40 W CFL
2a
6
8 (13% yield)
Scheme 4 (a) Visible-light photoredox decarboxylative coupling of 1a with 1-
15 (oct-1-ynylsulfonyl)benzene (4). (b) Visible-light photoredox decarboxylative
coupling of pimelic acid active ester (6) with 2a.
8
9
In summary, we have developed novel and efficient
consecutive visible-light photoredox decarboxylative couplings
of substituted adipic acid active esters (bis(1,3-dioxoisoindolin-2-
85
90
10 Using amino alkanoic acids and esters as the radical precursors, see:
S. B. Lang, K. M. O’Nele and J. A. Tunge, J. Am. Chem. Soc., 2014,
136, 13606.
20 yl)-substituted
hexanedioates)
with
1-(2-
arylethynylsulfonyl)benzenes under the assistant of the
photocatalyst [Ru(bpy)3]Cl2 and visible-light, in which the
starting materials are readily available. Importantly, the reactions
were performed at room temperature, and the successive
25 photoredox decarboxylative couplings led to formation of two C-
C bonds. The present discovery should provide a novel and
practical strategy for synthesis of cyclic molecules, and we
believe that it will find wide applications in various fields.
11 Using carboxylic acid active esters as the radical precursors, see: (a)
D. H. R. Barton, D. Crich, Y. Hervé, P. Potier and J. Thierry,
Tetrahedron, 1985, 41, 4347; (b) D. H. R. Barton, D. Bridon, Y.
Hervé, P. Potier, J. Thierry and S. Z. Zard, Tetrahedron, 1986, 42,
4983; (c) K. Okada, K. Okamoto, N. Morita, K. Okubo and M. Oda,
J. Am. Chem. Soc., 1991, 113, 9401; (d) K. Okada, K. Okubo, N.
Morita and M. Oda, Tetrahedron Lett., 1992, 33, 7377; (e) M.
Zlotorzynska and G. M. Sammis, Org. Lett., 2011, 13, 6264; (f) M. J.
Schnermann and L. E. Overman, Angew. Chem. Int. Ed., 2012, 51,
9576; (g) G. L. Lackner, K. W. Quasdorf and L. E. Overman, J. Am.
Chem. Soc., 2013, 135, 15342; (h) J. Xie, P. Xu, H. Li, Q. Xue, H.
Jin, Y. Cheng and C. Zhu, Chem. Commun., 2013, 49, 5672; (i) J.
Yang, J. Zhang, L. Qi, C. Hu and Y. Chen, Chem. Commun., 2015,
51, 5275; (j) H. Huang, G. Zhang and Y. Chen, Angew. Chem. Int.
Ed., 2015, 54, 7872; (k) H. Tan, H. Li, W. Ji and L. Wang, Angew.
Chem. Int. Ed., 2015, 54, 8374.
95
Financial support for this work was provided by the National
30 Natural Science Foundation of China (Grant Nos. 21372139 and
100
21221062),
and
Shenzhen
Sci
&
Tech
Bureau
(CXB201104210014A).
105 12 Using carboxylic acids as the radical precursors, see: (a) J. C. T.
Leung, C. Chatalova-Sazepin, J. G. West, M. Rueda-Becerril, J.-F.
Paquin and G. M. Sammis, Angew. Chem. Int. Ed., 2012, 51, 10804;
(b) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan and A. Lei,
Angew. Chem. Int. Ed., 2014, 53, 502.
110 13 Using N-Boc α-amino acids as the radical precursors, see: (a) A.
Noble and D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136,
11602; (b) L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J. Am.
Chem. Soc., 2014, 136, 10886; (c) Z. Zuo and D. W. C. MacMillan,
J. Am. Chem. Soc., 2014, 136, 5257; (d) Z. Zuo, D. T. Ahneman, L.
Notes and references
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
35 Biology (Ministry of Education), Department of Chemistry, Tsinghua
University, Beijing 100084, P. R. China. Fax: 86 10 62781695; E-mail:
†
Electronic supplementary information (ESI) available: General
40 procedure for visible-light photoredox synthesis of internal alkynes,
characterization data for compounds 3a-ac, references, and 1H and 13C
115
Chu, J. A. Terrett, A. G. Doyle and D. W. C. MacMillan, Science,
NMR
spectra
of
compounds
3a-ac.
See
2014, 345, 437.
14 C. Gao, J. Li, J. Yu, H. Yang and H. Fu, Chem. Commun., 2016, 52,
7292.
45 1 (a) P. Gallezot, Chem. Soc. Rev., 2015, 41, 1538; (b) A. J. J. Straathof,
Chem. Rev., 2014, 41, 1871.
2
For recent reviews, see: (a) J. D. Weaver, A. Recio, III, A. J.
Grenning and J. A. Tunge, Chem. Rev., 2011, 111, 1846; (b) N.
Rodriguez and L. J. Gooβen, Chem. Soc. Rev., 2011, 40, 5030; (c) W.
I. Dzik, P. P. Lange and L. J. Gooβen, Chem. Sci., 2012, 3, 2671; (d)
50
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3