Table 1. Optimization of the Reaction Conditionsa
Scheme 1. Pathways for 2-Arylbenzothiazole Formation
yield (%)b
3a 4a
entry
solvent
additive
1
toluene
DMF
PhCl
0
0
0
2
0
3
0
0
4
DMSO
PhCl
54
53
60
82
50
50
20
28
59
65
trace
30
5
DMSO (1 mL)
13
6
PhCl
DMSO (1.5 mmol)
DMSO (1.0 mmol)
DMSO (0.5 mmol)
DMSO (1.0 mmol)
DMSO (1.0 mmol)
DMSO (1.0 mmol)
DMSO (1.0 mmol)
DMSO (1.0 mmol)
DMSO (1.0 mmol)
trace
7
PhCl
PhCl
trace
8
0
0
1
2
0
0
0
9
toluene
NMP
H2O
10
11
12c
13d
14e
residual tolerance of metals. Aromatic ketones are cheap,
commercially available and relatively stable. The sp3 CÀH
bond of aromatic ketones can be activated by transition
metals under oxidative reaction conditions.13 Very recently,
the research groups of Wu and Prabhu developed various
PhCl
PhCl
PhCl
a Conditions: 1a (0.9 mmol), 2a (0.5 mmol), solvent (2.0 mL), 16 h,
140 °C under oxygen unless otherwise noted. b GC yield based on 2a
using dodecane as internal standard. c Under air. d At 120 °C. e Under
argon.
(6) For selected reviews on CÀH functionalization, see: (a) Dyker, G.
Handbook of C-H Transformations: Applications in Organic Synthesis;
Wiley-VCH: Weinheim, 2005. (b) Yu, J.; Shi, Z. CÀH Activation; Springer:
Berlin, 2010. (c) Goldberg, K. I.; Goldman, A. S. Activation and Functio-
nalization of CÀH Bond, ACS Symposium Series 885; American Chemical
Society: Washington D. C., 2004. For recent selected examples, see: (d)
Turner, G.; Morris, J.; Greaney, M. Angew. Chem., Int. Ed. 2007, 46, 7996.
(e) Do, H.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (f) Canivet,
J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733. (g) Zhao,
D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew.
Chem., Int. Ed. 2009, 48, 3296. (h) Huang, J.; Chan, J.; Chen, Y.; Borths,
C.; Kyle, K.; Larsen, R.; Margaret, M. J. Am. Chem. Soc. 2010, 132,
3674. (i) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010,
46, 2471. (j) Shibahara, F.; Yamaguchi, E.; Murai, T. J. Org. Chem.
2011, 76, 2680. (k) Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet,
J.; Yamaguchi, J.; Itami, K. Chem.;Eur. J. 2011, 17, 10113.
(7) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int.
Ed. 2010, 49, 2202.
(8) Zhang, F.; Greaney, M. Angew. Chem., Int. Ed. 2010, 49, 2768.
(9) (a) Liu, B.; Qin, X.; Li, K.; Li, X.; Guo, Q.; Lan, J.; You, J.
Chem.;Eur. J. 2010, 16, 11836. (b) Ranjit, S.; Liu, X. Chem.;Eur. J.
2011, 17, 1105. (c) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.;
Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 2387.
(10) (a) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem,
Int. Ed. 2008, 48, 201. (b) Roger, J.; Doucet, H. Org. Biomol. Chem. 2008,
6, 169. (c) Ackermann, L.; Barfusser, S.; Pospech, J. Org. Lett. 2010, 12,
724. (d) Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G. J. Org. Biomol.
Chem. 2011, 9, 7675. (e) Liu, B.; Guo, Q.; Cheng, Y.; Lan, J.; You, J. S.
Chem.;Eur. J. 2011, 17, 13415. (f) So, C.; Lau, C.; Kwong, F. Chem.;
Eur. J. 2011, 17, 761.
efficient approaches for aryl ketone sp3 CÀH bond functio-
nalization under transition-metal-free conditions. However,
in most cases, I2 or N-iodosuccinamide (NIS) is used to
activate the less reactive sp3 CÀH bond adjacent to the
carbonyl group in aromatic ketones.14 The preparation of
2-aryl benzothiazoles from aryl ketones under metal and I2
free conditions is a challenge. Herein, we report an efficient
approach for 2-aryl substituted benzothiazoles from 2-ami-
nobenzenethiols and aryl ketones under metal- and I2-free
conditions using molecular oxygen as oxidant (Scheme 1, c).
We began our study by examining the reaction of 2-ami-
nobenzenethiol (1a) with acetophenone (2a) in organic
solvents by using molecular oxygen (1 atm) as oxidant at
140 °C. When acetophenone reacted with 1.8 equiv of
2-aminobenzenethiol in the absence of any catalyst, no
desired product 3a was obtained in common organic sol-
vents such as toluene, DMF and chlorobenzene as deter-
mined by GC and 1H NMR methods (Table 1, entries 1À3).
DMSO was proved to be an efficient reaction media for this
kind of transformation, and the use of DMSO resulted the
desired product 3a in 54% yield together with 30% yield of
acylated adduct 4a (entry 4). A mixture of DMSO with
chlorobenzene was also proved to be good solvent for the
condensation reaction. Good yield was obtained when the
amount of DMSO decreased to 2 equiv, and the desired
product was obtained in 82% yield, and only trace amount
of byproduct 4a was observed (entry 7). DMSO played an
important role for this kind of transformation. Decreasing
the amount of DMSO decreased the reaction yield signifi-
cantly (entry 8). The replacement of chlorobenzene with
other solvents decreased the reaction yield (entries 9À11).
(11) Liu, S.; Chen, R.; Guo, X.; Yang, H.; Deng, G. J.; Li, C.-J. Green
Chem. 2012, 14, 1577.
(12) (a) Han, W.; Mayer, P.; Ofial, A. R. Angew. Chem., Int. Ed. 2011,
50, 2178. (b) Malakar, C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett.
2011, 13, 1378. (c) Wang, Z.; Li, K.; Zhao, D.; Lan, J.; You, J. Angew.
Chem., Int. Ed. 2011, 50, 5365. (d) Zhu, M.; Fujita, K.; Yamaguchi, R.
Chem. Commun. 2011, 47, 12876. (e) Nishino, M.; Hirano, K.; Satoh, T.;
Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993.
(13) Du, F.; Ji, J. X. Chem. Sci. 2012, 3, 460.
(14) (a) Zhu, Y.; Jia, F.; Liu, M.; Wu, A. X. Org. Lett. 2012, 14, 4414.
(b) Zhu, Y.; Jia, F.; Liu, M.; Wu, L.; Cai, Q.; Gao, Y.; Wu, A. X. Org.
Lett. 2012, 14, 5378. (c) Zhu, Y.; Lian, M.; Jia, F.; Liu, M.; Yuan, J.;
Gao, Q.; Wu, A. X. Chem. Commun. 2012, 48, 9086. (d) Lamani, M.;
Prabhu, K. R. Chem.;Eur. J. 2012, 18, 14638. (e) Zhu, Y.; Jia, F.; Yuan,
J.; Gao, Q.; Lian, M.; Wu, A. X. Org. Lett. 2012, 14, 3392. (f) Zhu, Y.;
Gao, Q.; Lian, M.; Yuan, J.; Liu, M.; Zhao, Q.; Yang, Y.; Wu, A. X.
Chem. Commun. 2011, 47, 12700.
Org. Lett., Vol. 14, No. 23, 2012
6005