derived â-lactam scaffold 68 have been reported. In both
instances, a Mitsunobu-type N1-C4 cyclization was the key
step to form the 2-azetidinone ring from R-substituted serine
dipeptides 8. Unfortunately, the general applicability of such
intermediates to the synthesis of â-lactam scaffolds 7 is
drastically limited by the low acidity of the amide moiety
and the steric hindrance of substituents nearby.9
Herein, we report a general preparation of enantiopure
ditopic â-lactam scaffolds 7 by means of an alternative
N1-C2 ester-amine cyclization strategy (Scheme 1). Our
Scheme 1
Figure 2. â-Lactam scaffold-assisted design (â-LSAD): formal
insertion in the native peptide of a carbon atom (CR-H +
H-N f CH2) provides the minimal pseudopeptide 4 required to
accommodate a â-turn conformation. PG: protecting group.
synthetic plan employed â-N-peptidyl-azaserinates 9 as
â-lactam ring precursors and involved the reaction of
R-amino esters 1110 with N-(o-nosyl)-aziridines 10,11 which
acted as N-protected, O-activated equivalents of R-substituted
serinates 12.12
design of “minimal” lactam peptidomimetics incorporating
restraint elements as small as possible becomes highly
attractive. Within this endeavor, we have undertaken the
development of pseudopeptides 4 by applying a “â-lactam
scaffold-assisted design” (â-LSAD). Mimetics resulting from
such an approach differ only in one single carbon atom from
the native peptides and are characterized by (a) an (i + 1)
residue consisting of an R-alkyl-R-amino-â-lactam ring
unsubstituted at position â and (b) a linear disposition of
the CR, N, and CR′ atoms.4
Although the synthesis of scaffolds for monotopic â-lactam
pseudopeptides 4 (R2 ) H) is known,4,5 no general method
exists to prepare the ditopic â-lactam counterparts required
for the full development of â-LSAD.6 Only the syntheses of
the racemic azapeptidomimetic â-lactam 57 and the proline-
Nosylation of methyl R-benzylserinate 15 under standard
conditions (o-Ns-Cl, Et3N, DMAP catalyst) proved surpris-
ingly troublesome (Scheme 2), yielding the expected N-
monoprotected product in less than 25% yield. Changing to
inorganic bases (K2CO3) also led to the formation of the same
product along with the unexpected oxazolidin-2-one 16,
incorporating a carbamate carbonyl group from potassium
carbonate. Gratifyingly, we found that R-substituted methyl
serinates (15 and 17) or their peptides (18) were cleanly
(7) Broadrup, R. L.; Wang, B.; Malachowski, W. P. Tetrahedron 2005,
61, 10277-10284.
(8) (a) Bittermann, H.; Gmeiner, P. J. Org. Chem. 2006, 71, 97-102.
(b) Bittermann, H.; Bo¨ckler, F.; Einsiedel, J.; Gmeiner, P. Chem.-Eur. J.
2006, 12, 6315-6322.
(9) For instance, in our hands, dipeptide CHO-(D)-Ser(RBn)-GlyOBn
failed repeatedly to cyclize to the corresponding â-lactam 7 (PG ) CHO;
R1 ) Bn; R2 ) H, R ) Bn) under several Mitsunobu conditions, including
those reported in refs 7 and 8.
(10) Alternative access to â-N-peptidyl-azaserinates 9 was also explored
from R-amino esters (including unhindered benzyl glycinate) and R-sub-
stituted serines with the hydroxy group activated as O-mesylate 13 and
lactone 14, but all attempts to prepare the desired R,â-diamino esters met
with failure.
(4) Palomo, C.; Aizpurua, J. M.; Benito, A.; Miranda, J. I.; Fratila, R.
M.; Matute, C.; Domercq, M.; Gago, F.; Martin-Santamaria, S.; Linden,
A. J. Am. Chem. Soc. 2003, 125, 16243-16260.
(5) (a) Macias, A.; Ramallal, A. M.; Alonso, E.; Del Pozo, C.; Gonzalez,
J. J. Org. Chem. 2006, 71, 7721-7730. (b) Palomo, C.; Aizpurua, J. M.;
Benito, A.; Galarza, R.; Khamrai, U. K.; Vazquez, J.; DePascual-Teresa,
B.; Nieto, P. M.; Linden, A. Angew. Chem., Int. Ed. 1999, 38, 3056-3058.
(c) Wu, Z.; Georg, G. I.; Cathers, B. E.; Schloss, J. V. Bioorg. Med. Chem.
Lett. 1996, 6, 983-986.
(6) Freidinger-type â-lactam scaffolds (R1 ) H): (a) Turner, J. J.;
Sikkema, F. D.; Filippov, D. V.; van der Marel, G. A.; van Boom, J. H.
Synlett 2001, 1727-1730. (b) Sreenivasan, U.; Mishra, R. K.; Johnson, R.
L. J. Med. Chem. 1993, 36, 256-263. For related â-substituted â-lactam
scaffolds, see: (c) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Benito, A.;
Cuerdo, L.; Fratila, R. M.; Jimenez, A.; Loinaz, I.; Miranda, J. I.; Pytlewska,
K. R.; Micle, A.; Linden, A. Org. Lett. 2004, 6, 4443-4446. (d) Alonso,
E.; Lo´pez-Ortiz, F.; Del Pozo, C.; Peralta, E.; Mac´ıas, A.; Gonza´lez, J. J.
Org. Chem. 2001, 66, 6333-6338. (e) Ojima, I. Acc. Chem. Res. 1995, 28,
383-389. (f) Maier, T. C.; Frey, W. U.; Podlech, J. Eur. J. Org. Chem.
2002, 2686-2689.
(11) Monographs on the reactivity of aziridines: (a) Tanner, D. Angew.
Chem., Int. Ed. Engl. 1994, 33, 599-619. (b) Pearson, W. H.; Lian, B. W.;
Bergmeier, S. C. In ComprehensiVe Heterocyclic Chemistry II; Padwa, A.,
Ed.; Pergamon: New York, 1996; Vol. 1A, p 1-60. (c) Atkinson, R. S.
Tetrahedron 1999, 55, 1519-1559. (d) Osborn, H. M. I.; Sweeney, J.
Tetrahedron: Asymmetry 1997, 8, 1693-1715.
(12) Available from (D)-serine. See: Seebach, D.; Aebi, J. D.; Gander-
Coquoz, M.; Naef, R. HelV. Chim. Acta 1987, 70, 1194-1216.
102
Org. Lett., Vol. 9, No. 1, 2007