C O M M U N I C A T I O N S
Table 2. Chiral Cationic Palladium Complex 4b Catalyzed
Enantioselective Intramolecular Addition of Arylboronic Acids to
Ketonesa
the detailed mechanism and expanding the intermolecular reactions
are currently underway.
Acknowledgment. We thank the National Natural Sciences
Foundation of China (Grant 20572121) and Chinese Academy of
Sciences for financial Support.
Supporting Information Available: Experimental procedures and
characterization data of new compounds. This material is available free
entry
substrate
product
yield (%)b
ee (%)c
X ) O, n ) 1, R1 ) R2 ) H
1
1a: R ) Ph
2a
85
92
90
86
84
58
92 (-)
91 (-)
87 (-)
93 (-)
84 (-)
96 (-)
2d
3d
4d
5d,f
6
1b: R ) 4-MeOC6H4
1c: R ) 4-ClC6H4
1d: R ) 4-CF3C6H4
1e: R ) 2-furyl
2b
2c
2d
2e
2f
References
(1) For recent reviews, see: (a) Ramo´n, D. J.; Yus, M. Angew. Chem., Int.
Ed. 2004, 43, 284. (b) Soai, K.; Shibata, T. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-
Verlag: Berlin, 2004; Suppl. 1, pp 95-106.
1f: R ) CH3
(2) (a) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757. (b) Denmark, S. E.; Fu,
X ) O, n ) 1, R ) Ph
J. Chem. ReV. 2003, 103, 2763.
7d
8d
9d
1g: R1 ) H, R2 ) OMe
2g
2h
2i
91
83
82
89 (-)
89 (-)
93 (-)
(3) (a) Betancort, J. M.; Garc´ıa, C.; Walsh, P. J. Synlett 2004, 749 (b) Jeon,
S.-J.; Li, H.; Garc´ıa, C.; LaRochelle, L. K.; Walsh, P. J. J. Org. Chem.
2005, 70, 448. (c) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2004, 126, 8910. (d) Lou, S.; Moquist, P. N.; Schaus, S. E.
J. Am. Chem. Soc. 2006, 128, 12660. (e) Mikami, K.; Aikawa, K.;
Kainuma, S.; Kawakami, Y.; Saito, T.; Sayo, N.; Kumobayashi, H.
Tetrahedron: Asymmetry 2004, 15, 3885.
1h: R1 ) Cl, R2 ) H
1i: R1 ) CH3, R2 ) H
X ) CH2, n ) 1, R ) Ph
10e
11d
1j: R1 ) R2 ) H
2j
53
82
66 (-)g
53 (-)
X ) O, n ) 2, R ) Ph
(4) (a) Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445. (b) Bolm,
C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850. (c) Garc´ıa, C.; Walsh,
P. J. Org. Lett. 2003, 5, 3641. (d) Li, H.; Garc´ıa, C.; Walsh, P. J. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5425. (e) Pieto, O.; Ramo´n, D. J.; Yus,
M. Tetrahedron: Asymmetry 2003, 14, 1955.
(5) Rh-catalyzed enantioselective addition of arylboronic acids to aldehydes,
see: (a) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998,
37, 3279. (b) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.; Zhou, Q.-L.
Org. Lett. 2006, 8, 1479. (c) Suzuki, K.; Ishii, S.; Kondo, K.; Aoyama,
T. Synlett 2006, 648.
(6) Rh-catalyzed addition of organometallic reagents to simple ketones, see:
(a) Takezawa, A.; Yamaguchi, K.; Ohmura, T.; Yamamoto, Y.; Miyaura,
N. Synlett 2002, 1733. (b) Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi,
T.; Inoue, Y. Tetrahedron 2003, 59, 4351. (c) Ueura, K.; Miyamura, S.;
Satoh, T.; Miura, M. J. Organomet. Chem. 2006, 691, 2821.
(7) (a) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45,
3353. (b) Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.;
Minnaard, A. J. Org. Lett. 2006, 8, 2715.
1k: R1 ) R2 )H
2k
a Unless otherwise indicated, all reactions were performed at 40 °C using
the substrate (0.2 mmol), Amberlite IRA-400 (OH) (1.5 eqiuv), and 4b
(2.5 mol %) in toluene (2 mL) under N2. b Isolated yield. c Determined by
HPLC analysis using a Chiralcel OD column. The sign of optical rotation
was indicated in parentheses. d Using toluene/dioxane (1:1) as solvent.
e Using toluene/DCE (1:1) as solvent. f Reaction temperature was 80 °C.
g The absolute configuration was determined to be (R) (see Supporting
Information).
Scheme 1. Plausible Mechanism for the Enantioselective
Intramolecular Addition of Arylboronic Acids to Ketones Catalyzed
by a Cationic Pd(II) Complex 4b
(8) For a recent review, see: Yamamoto, Y.; Nakamura, I. Top. Organomet.
Chem. 2005, 14, 211 and references therein.
(9) Pd(0)-catalyzed arylation of ketones and nitriles, see: (a) Quan, L. G.;
Lamrani, M.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 4827. (b) Sole´,
D.; Vallverdu´, L.; Solans, X.; Font-Bard´ıa, M.; Bonjoch, J. J. Am. Chem.
Soc. 2003, 125, 1587. (c) Pletnev, A. A.; Larock, R. C. Tetrahedron Lett.
2002, 43, 2133. (d) Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2002,
67, 9428.
(10) Pd(II)-catalyzed arylation of aldehydes and nitriles, see: (a) Yamamoto,
T.; Ohta, T.; Ito, Y. Org. Lett. 2005, 7, 4153. (b) Zhou, C.; Larock, R. C.
J. Am. Chem. Soc. 2004, 126, 2302. (c) Zhou, C.; Larock, R. C. J. Org.
Chem. 2006, 71, 3551. (d) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47,
6765. (e) Suzuki, K.; Arao, T.; Ishii, S.; Maeda, Y.; Kondo, K.; Aoyama,
T. Tetrahedron Lett. 2006, 47, 5789.
(11) Pd(II)-catalyzed 1,2-addition of aldehydes and ketones initiated by
acetoxypalladation of alkynes, see: (a) Zhao, L.; Lu, X. Angew. Chem.,
Int. Ed. 2002, 41, 4343. (b) Lu, X. Top. Catal. 2005, 35, 73.
the transition-metal complex and the hydroxo ligand.17 After trans-
metalation (step I), arylpalladium species B undergoes intramo-
lecular 1,2-addition (step II) to the ketone to form addition product
C, which upon hydrolysis (step III) forms product 2a and regen-
erates the catalytic active intermediate A. High Lewis acidity of the
palladium center in cationic species B may activate the carbonyl
group by coordination making the addition reactions easy to occur.12
It is also proposed that this coordinated intermediate B is helpful
to the enantioface discrimination of ketones resulting in high ee
values.1a When the reaction is carried out in the presence of a
coordinative solvent such as MeOH, or DMF, a competitive inter-
mediate D, which is more conformationally flexible, will produce
the low ee value. These results indicate the dual role of the cationic
palladium complex in the catalytic cycle: it acts as the transition
metal in step I and plays the role of Lewis acid in step II.18
In summary, a highly enantioselective synthesis of optically
active cycloalkanols by utilizing the chiral cationic palladium
complex 4b as catalyst was achieved. Further studies on probing
(12) Mikami, K.; Hatano, M.; Akiyama, K. Top. Organomet. Chem. 2005, 14,
279 and references therein.
(13) Stang, P. J.; Cao, D. H.; Poulter, G. T.; Arif, A. M. Organometallics 1995,
14, 1110.
(14) The additive base is necessary to prevent the product for further
dehydration to benzofuran. Ghosh, S.; Datta, I.; Chakraborty, R.; Das, T.
K.; Sengupta, J.; Sarkar, D. C. Tetrahedron 1989, 45, 1441.
(15) For recent selected examples catalyzed by 4, see: (a) Hagiwara, E.; Fujii,
A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474. (b) Fujii, A.;
Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450. (c)
Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124,
11240. (d) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka,
M. Org. Lett. 2004, 6, 1861. (e) Hamashima, Y.; Sasamoto, N.; Hotta,
D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005,
44, 1525.
(16) The substrates were easily synthesized by trapping the corresponding
arylmetal intermediates with borates (see Supporting Information).
(17) (a) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Organometallics 2004, 23,
4317. (b) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (c) Hayashi,
T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002,
124, 5052.
(18) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc.
2002, 124, 764.
JA0672425
9
J. AM. CHEM. SOC. VOL. 128, NO. 51, 2006 16505