J. D. Cuthbertson et al. / Tetrahedron Letters 52 (2011) 2024–2027
2027
O
O
O
O
O
O
Me
O
pTSA (10 mol%)
Me
Me
Me
Me
Me
Me
Me
PhMe, 50ºC, 18 h
74%
14 (1 mol%)
Neat, rt, 24 h
91%
O
8j
15
35% aq. NH3
MeOH
0 ºC to rt
82%
CF3
CF3
N
H
O
OTMS
CF3
N
Me
Me
F3C
(-)-Mearsine 4
(81% ee)
14
Scheme 5. Synthesis of (À)-mearsine 4.
tion18 and subsequent aldol condensation. Thus, addition of 2,4-
pentanedione to crotonaldehyde mediated by Jorgensen’s catalyst
14 (1 mol %)19 gave aldehyde 15 in 91% unpurified yield. Immedi-
ate treatment of the aldehyde 15 with pTSA (10 mol %) furnished
the desired cyclohexenone 8j, which was isolated as a complex
mixture of diastereoisomers/tautomers. Treatment of diketone 8j
with 35% aqueous ammonia in methanol initiated the required
tandem amination/imination sequence to produce (À)-mearsine
4 in 82% yield;20 the melting point (mp 38–40 °C; lit.5 43–44 °C)
and spectral data for the isolated product corresponded closely to
those reported,5,17 although there was a discrepancy in the optical
5. Robertson, G. B.; Tooptakong, U.; Lamberton, J. A.; Geewananda, Y. A.;
Gunawardana, P.; Bick, I. R. C. Tetrahedron Lett. 1984, 25, 2695–2696;
Lamberton, J. A.; Geewananda, Y. A.; Gunawardana, P.; Bick, I. R. C. J. Nat.
Prod. 1983, 46, 235–247.
6. Carroll, A. R.; Arumugan, G.; Quinn, R. J.; Redburn, J.; Guymer, G.; Grimshaw, P.
J. Org. Chem. 2005, 70, 1889–1892.
7. Brooke, G. M.; Matthews, R. S.; Robson, N. S. J. Chem. Soc., Perkin Trans. 1 1980,
102–106; Babu, G.; Perumal, P. T. Tetrahedron 1998, 54, 1627–1638; McClure, C.
K.; Link, J. S. J. Org. Chem. 2003, 68, 8256–8257; Sundén, H.; Ibrahem, I.;
Eriksson, L.; Córdova, A. Angew. Chem., Int. Ed. 2005, 44, 4877–4880; Yang, H.;
Carter, R. G. J. Org. Chem. 2009, 74, 5151–5156.
8. Quirante, J.; Diaba, F.; Vila, X.; Bonjoch, J. Magn. Reson. Chem. 2005, 43, 599–
601.
9. Rassat, A.; Rey, P. Tetrahedron 1972, 28, 741–750.
10. Larouche-Gauthier, R.; Bélanger, G. Org. Lett. 2008, 10, 4501–4504.
11. Kurasaki, H.; Okamoto, I.; Morita, N.; Tamura, O. Chem. Eur. J. 2009, 15, 12754–
12763.
12. Fuchs, P. L.; Musser, A. K. J. Org. Chem. 1982, 47, 3121–3131.
13. All novel compounds were fully characterised by 1H/13C NMR spectroscopy, IR
spectroscopy and HRMS.
rotation data {lit. [
a]
D
À34.5 (c 0.495, CH2Cl2);5 synthetic 4, [
a]
D
À252.6 (c 0.51, CH2Cl2)}. For this reason, chiral HPLC analysis (Phe-
nomenex Lux Cellulose-2 column, 95:5 iso-hexane/EtOH, flow rate
1.0 mL/min) was performed which confirmed that the enantio-
meric ratio was 90.5:9.5, and conclusive evidence for the structure
and relative stereochemistry of synthetic 4 was provided by single
crystal X-ray analysis of the picrate salt (mp 208–210 °C dec; lit.5
mp 212–213 °C).
In summary, a tandem amination/imination route has been
developed to convert 6-acyl-cyclohex-2-enones 8 into isoquinuc-
lidinones 6 in a one-pot process.
The scope and limitations of the methodology have been inves-
tigated, and the utility of the sequence has been demonstrated
with an efficient synthesis of the alkaloid (À)-mearsine (the first
synthesis of the (À)-enantiomer). Applications of this new tandem
methodology in the preparation of more complex natural product
targets are currently underway.
14. Representative experimental procedure: To a stirred solution of diketone 8d
(55 mg, 0.25 mmol) in MeOH (1 mL) at 0 °C was added dropwise 35% aqueous
NH3 (0.5 mL). The resulting yellow solution was held at 0 °C for 30 min, then
warmed to rt with stirring until consumption of starting material was observed
by TLC analysis (DCM/MeOH, 95:5). The reaction mixture was then diluted
with water (5 mL) and extracted with DCM (3 Â 10 mL). The combined organic
extracts were washed with brine (10 mL), dried (MgSO4) and then
concentrated in vacuo to afford
column chromatography (SiO2, DCM/MeOH, 98:2) to give isoquinuclidinone 6d
(44 mg, 80%) as a colourless oil Rf 0.49 (DCM/MeOH, 95:5);
max/cmÀ1 (neat)
a colourless oil which was purified by
m
2930, 2868, 1731, 1576, 1340; dH (400 MHz, CDCl3) 6.41 (1H, m), 4.60 (1H,
dddd, J = 3.6, 3.6, 1.8, 1.8), 3.62 (1H, d, J = 3.1), 2.30–2.25 (2H, m), 2.21–2.15
(2H, m), 2.12 (1H, dm, J = 19.0), 2.02 (1H, dd, J = 19.0, 1.8), 2.01–1.93 (1H, m),
1.91–1.81 (1H, m), 1.67–1.54 (4H, m), 1.24 (1H, ddd, J = 12.8, 4.4, 1.8), 1.03 (3H,
d, J = 7.0); dC (100 MHz, CDCl3) 209.2 (CO), 172.2 (CN), 135.3 (C), 133.0 (CH),
55.8 (CH), 55.6 (CH), 39.8 (CH2), 32.7 (CH2), 29.2 (CH), 26.0 (CH2), 24.0 (CH2),
22.1 (CH2), 21.8 (CH2), 21.3 (CH3); m/z (ESI) 218 [MH]+; [HRMS (ESI): calcd for
C
14H20NO, 218.1539; found: MH+, 218.1540 (0.4 ppm error)].
15. Lowering the reaction temperature or reducing the reaction time failed to
prevent the undesired ring opening but instead gave incomplete conversion of
the starting material.
16. Katavic, P. L.; Venables, D. A.; Forster, P. I.; Guymer, G.; Carroll, A. R. J. Nat. Prod.
2006, 69, 1295–1299.
Acknowledgements
We are grateful to the EPSRC and AstraZeneca for studentship
support (JDC).
17. Crouse, J. R.; Pinder, A. R. J. Nat. Prod. 1989, 52, 1227–1230.
18. Lathrop, S. P.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628–13630.
19. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A. Angew. Chem., Int. Ed.
2005, 44, 794–797.
References and notes
m
max/cmÀ1 (neat) 2957, 1729, 1633,
1. (a)Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ed.; Elsevier, 2008;
Vols. 1–15, For recent publications in this area from our group see: (b) Pugh, D.
S.; Klein, J. E. M. N.; Perry, A.; Taylor, R. J. K. Synlett 2010, 934–938; Catozzi, N.;
Edwards, M. G.; Raw, S. A.; Wasnaire, P.; Taylor, R. J. K. J. Org. Chem. 2009, 74,
8343–8354; Millemaggi, A.; Perry, A.; Whitwood, A. C.; Taylor, R. J. K. Eur. J. Org.
Chem. 2009, 2947–2952; Donald, J. R.; Taylor, R. J. K. Synlett 2009, 59–62;
Bromley, W. J.; Gibson, M.; Lang, S.; Raw, S. A.; Whitwood, A. C.; Taylor, R. J. K.
Tetrahedron 2007, 63, 6004–6014.
2. Kobayashi, J.; Kubota, T. Nat. Prod. Rep. 2009, 26, 936–962.
3. Weinreb, S. Nat. Prod. Rep. 2009, 26, 758–775.
4. de Souza, J. J.; Mathias, L.; Braz-Filho, R.; Vieira, I. J. C. Helv. Chim. Acta 2010, 93,
422–429.
20. (À)-Mearsine 4: Rf 0.45 (DCM/MeOH, 9:1);
1379; dH (400 MHz, CDCl3) 4.50 (1H, dddd, J = 3.5, 3.5, 1.9, 1.9), 3.13 (1H, d,
J = 2.9), 2.17–2.08 (1H, m), 2.12 (3H, s), 2.01 (1H, dd, J = 19.0, 1.8), 1.97 (2H, m),
1.22 (1H, m), 1.04 (3H, d, J = 6.9); dC (100 MHz, CDCl3) 208.4 (CO), 173.7 (CN),
61.4 (CH), 55.5 (CH), 39.5 (CH2), 32.4 (CH2), 28.8 (CH), 24.5 (CH3), 21.0 (CH3);
m/z (ESI) 152 [MH]+; [HRMS (ESI): calcd for C9H14NO, 152.1070; found: MH+,
152.1070 (0.1 ppm error)]; HPLC Analysis [Phenomenex Lux Cellulose-2
column, 95:5 iso-hexane/EtOH, flow rate 1.0 mL/min; RT = 9.51 (minor, 9.5%)
and 10.62 (major, 90.5%)]. Picrate salt mp 208–210 °C dec (lit.5 mp 212–
213 °C).