C O M M U N I C A T I O N S
Table 2. Elaboration of Coupling Products 2 and 8a
GM69445) for partial support of this research. Professor Benjamin
List is thanked for the donation of the chiral phosphoric acid.
Umicore is thanked for the donation of Rh(COD)2OTf.
Supporting Information Available: Spectral data for all new
compounds, along with HPLC traces of racemic and optically enriched
coupling products. Single-crystal X-ray diffraction data for of the
carbamate derived upon reaction of coupling product 2 with the
isocyanate derived from phenylalanine methyl ester. This material is
References
(1) For selected reviews on alkene hydroformylation, see: (a) Falbe, J. Carbon
Monoxide in Organic Synthesis; Springer: Berlin, 1970. (b) Falbe, J.,
Ed. New Syntheses with Carbon Monoxide; Springer: Berlin, 1980. (c)
Siegel, H.; Himmele, W. Angew. Chem., Int. Ed. Engl. 1980, 19, 178. (d)
Cornils, B.; Herrmann, W. A.; Kohlpaintner, C. W. Angew. Chem., Int.
Ed. Engl. 1994, 33, 2144. (e) Beller, M.; Cornils, B.; Frohning, C. D.;
Kohlpaintner, C. W. J. Mol. Catal. 1995, 104, 17. (f) Eilbracht, P.;
Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.; Kranemann,
C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A. Chem. ReV. 1999, 99,
3329. (g) Nozaki, K. In ComprehensiVe Asymmetric Catalysis; Jacobsen,
E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999;
Vol. 1, p 381. (h) Breit, B. Acc. Chem. Res. 2003, 36, 264.
a Cited yields are of pure isolated material and represent the average of
two runs. See Supporting Information for detailed experimental procedures.
b Yield based on recovered starting material.
Scheme 1. Plausible Catalytic Mechanism as Supported by the
Effect of Chiral Brønsted Acid Catalyst and 2H-Labeling
(2) For hydrogen-mediated C-C bond formations developed in our lab, see:
(a) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc.
2002, 124, 15156. (b) Huddleston, R. R.; Krische, M. J. Org. Lett. 2003,
5, 1143. (c) Koech, P. K.; Krische, M. J. Org. Lett. 2004, 6, 691. (d)
Marriner, G. A.; Garner, S. A.; Jang, H.-Y.; Krische, M. J. J. Org. Chem.
2004, 69, 1380. (e) Jang, H.-Y.; Huddleston, R. R.; Krische, M. Angew.
Chem., Int. Ed. 2003, 42, 4074. (f) Jang, H.-Y.; Huddleston, R. R.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 4664. (g) Huddleston, R. R.; Jang,
H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 11488. (h) Jang, H.-
Y.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 7875. (i) Jang, H.-Y.;
Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. Am.
Chem. Soc. 2005, 127, 6174. (j) Kong, J.-R.; Cho, C.-W.; Krische, M. J.
J. Am. Chem. Soc. 2005, 127, 11269. (k) Jung, C.-K.; Garner, S. A.;
Krische, M. J. Org. Lett. 2006, 8, 519. (l) Kong, J.-R.; Ngai, M.-Y.;
Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (m) Rhee, J.-U.; Krische,
M. J. J. Am. Chem. Soc. 2006, 128, 10674. (n) Cho, C.-W.; Krische, M.
J. Org. Lett. 2006, 8, 891. (o) Cho, C.-W.; Krische, M. J. Org. Lett. 2006,
8, 3873.
Terada-type phosphoric acid derived from BINOL.7,8 Remarkably,
the coupling product 2 exhibits substantial levels of optical
enrichment (82% ee). These data are consistent with a catalytic
mechanism in which the Brønsted acid co-catalyst protonates and/
or forms a strong hydrogen bond to 2-pyridinecarboxaldehyde in
advance of the stereogenic C-C bond forming event. Further, the
high levels of optical enrichment suggest that the LUMO lowering
effects of protonation and/or hydrogen bonding dramatically
accelerate the rate of C-C coupling. In analogous experiments
involving pyruvates and glyoxalates,2l chiral Brønsted acid co-
catalysts do not provide optically enriched product, suggesting that
protonation of 1a is responsible for asymmetric induction and not
ion-pairing to rhodium.
(3) Prior to our work, the following hydrogen-mediated C-C bond formations
under CO-free conditions were reported: (a) Molander, G. A.; Hoberg,
J. O. J. Am. Chem. Soc. 1992, 114, 3123. (b) Kokubo, K.; Miura, M.;
Nomura, M. Organometallics 1995, 14, 4521.
(4) An enantioselective variant of Montgomery’s Ni-catalyzed alkyne-
aldehyde coupling has been reported. This transformation requires 20 mol
% loadings of chiral ligand and syringe pump addition of reactants: Miller,
K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442.
(5) For reviews encompassing direct reductive coupling of alkynes to carbonyl
partners, see: (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J.
Chem. ReV. 1996, 96, 635. (b) Montgomery, J. Acc. Chem. Res. 2000,
33, 467. (c) Montgomery, J.; Amarashinghe, K. K. D.; Chowdhury, S.
K.; Oblinger, E.; Seo, J.; Savchenko, A. V. Pure Appl. Chem. 2002, 74,
129. (d) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120. (e) Miller,
K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron: Asymmetry 2003, 3619.
(f) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (g) Jang, H.-
Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653.
(6) Alkyne-aldehyde coupling may be achieved indirectly via alkyne
hydrometalation using hydroboranes or Cp2ZrHCl followed by transmeta-
lation to afford organozinc reagents, which engage in catalyzed enanti-
oselective additions to aldehydes: (a) Oppolzer, W.; Radinov, R. HelV.
Chim. Acta 1992, 75, 170. (b) Oppolzer, W.; Radinov, R. J. Am. Chem.
Soc. 1993, 115, 1593. (c) Soai, K.; Takahashi, K. J. Chem. Soc., Perkin
Trans. 1 1994, 1257. (d) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35,
5197. (e) Wipf, P.; Xu, W. Org. Synth. 1996, 74, 205. (f) Wipf, P.; Ribe,
S. J. Org. Chem. 1998, 63, 6454. (g) Oppolzer, W.; Radinov, R. N.; El-
Sayed, E. J. Org. Chem. 2001, 66, 4766. (h) Dahmen, S.; Bra¨se, S. Org.
Lett. 2001, 3, 4119. (i) Ji, J.-X.; Qiu, L.-Q.; Yip, C. W.; Chan, A. S. C.
J. Org. Chem. 2003, 68, 1589. (j) Lurain, A. E.; Walsh, P. J. J. Am. Chem.
Soc. 2003, 125, 10677. (k) Ko, D.-H.; Kang, S.-W.; Kim, K. H.; Chung,
Y.; Ha, D.-C. Bull. Korean Chem. Soc. 2004, 25, 35. (l) Jeon, S.-J.; Chen,
Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729. (m) Li, H.; Walsh, P. J. J.
Am. Chem. Soc. 2005, 127, 8355. (n) Jeon, S.-J.; Fisher, E. L.; Carroll, P.
J.; Walsh, P. J. J. Am. Chem. Soc. 2006, 128, 9618.
(7) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchiba, K. Angew. Chem., Int.
Ed. 2004, 116, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356. (c) Hoffman, S.; Seayad, A. M.; List, B. Angew. Chem.,
Int. Ed. 2005, 117, 7424.
(8) For recent reviews on Brønsted acid organocatalysis, see: (a) Pihko, P.
M. Angew. Chem., Int. Ed. 2004, 43, 2062. (b) Seayad, J.; List, B. Org.
Biomol. Chem. 2005, 3, 719.
Reductive coupling of enyne 1a to 2-pyridinecarboxaldehyde
under a deuterium atmosphere provides, after isolation by silica
gel chromatography, deuterio-2. The collective data suggest a
catalytic mechanism in which association of the Brønsted acid to
2-pyridinecarboxaldehyde precedes oxidative coupling with the
conjugated enyne to form an oxarhodacyclic intermediate. Deute-
riolytic cleavage of the metallacycle via σ bond metathesis, which
likely occurs through a six-centered transition structure,9 releases
the Brønsted acid co-catalyst and delivers a cationic Rh(III)(vinyl)-
(deuteride), which reductively eliminates to form the deuterio-2,
along with the starting cationic rhodium complex to complete the
catalytic cycle.
(9) Hydrogenolysis of rhodium formate complexes has been postulated to
occur through a six-centered transition structure. See: Musashi, Y.; Sakaki,
S. J. Am. Chem. Soc. 2002, 124, 7588.
Acknowledgment. Acknowledgment is made to the Welch
Foundation, Johnson & Johnson, and the NIH-NIGMS (RO1-
JA0673027
9
J. AM. CHEM. SOC. VOL. 128, NO. 51, 2006 16449