2
Tetrahedron Letters
To further demonstrate the generality of the current protocol, we next examined the reaction of ethyl -aminoacylates 3
(Scheme 3). Gratifyingly, the use of same ligand L5 could also provide efficient silyl transfer with good enantioinduction when
NaOMe was used as the base instead of NaOtBu. N-alkyl substituted substrates provided products in high yields (4a, 4c, and 4d, 90-
98%) with good ee values (84-87%). Interestingly, the substrate 3b bearing a free N-H group could also be compatible with the
reaction conditions, giving 4b in 72% yield with good enantioselectivity (88%). The free N-H group allows it to undergo further
diversifications.
Figure 1. Plausible reaction mechanism.
Giving the importance of MeOH in promoting the reaction, we believed the reaction has a similar mechanism with other copper-
catalyzed -silylation of ,-unsaturated compounds. Thus, a plausible mechanism is elucidated as shown in Figure 1. The reaction
of in-situ generated copper alkoxide NHC-CuOR A with borylsilane via -bond metathesis gives silylcopper intermediate B.25
Coordination of B with the carbon-carbon -bond of 1a followed by 3,4-addition would provide the complex D bearing a C-Cu
bond.26 Subsequent protonation of C-Cu bond results in the silylated product with the concurrent regeneration of species A.
Conclusion
In summary, we have developed an NHC-copper-catalyzed enantioselective -silylation of -amido acrylonitriles and -
amidoacrylates under mild reaction conditions for the first time. The reaction provides corresponding chiral -aminosilanes in good
yields with good to excellent enantioselectivities (84-94% ees). Application of silylated products and development of other
asymmetric silylation reactions are currently underway in our laboratory.
Acknowledgments
This work was supported by a Start-up Grant from Lanzhou Institute of Chemical Physics, National Natural Science Foundation of
China (21573262, 21502175, 21801246), Natural Science Foundation of Jiangsu Province (BK20161259, BK20170422) and
Outstanding Young Talent Research Found of Zhengzhou University (NO. 1621316005).
References and notes
1. Hiyama T.; Kusamoto T. In Comprehensive Organic Synthesis, Vol. 8 (Eds.: Trost, B. M.; I. Fleming), Pergamon, Oxford, 1991, Chap. 3.12.
2. The Chemistry of Organosilicon Compounds (Eds.: Rappoport Z.; Apeloig Y.), Wiley, Chichester, 1998.
3. Kim J.; Hewitt, G.; Carroll, P.; Sieburth, S. M. J. Org. Chem. 2005, 70, 5781–5789.
4. Meanwell, N. A. J. Med. Chem., 2011, 54, 2529–2591.
5. Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388–405.
6. Barberis C.; Voyer, N. Tetrahedron Lett. 1998, 39, 6807–6810.
7. G. Liu, S. M. Sieburth, Org. Lett., 2003, 5, 4677–4679.
8. Sieburth, S. M.; O'Hare, H. K.; Xu, J.; Chen, Y.; Liu, G. Org. Lett. 2003, 5, 1859–1861.
9. Ballweg, D. M.; Miller, R. C.; Gray, D. L.; Scheidt, K. A. Org. Lett. 2005, 7, 1403–1406.
10. Bo, Y.; Singh, S.; Duong, H. Q.; Cao, C.; Sieburth, S. M. Org. Lett. 2011, 13, 1787–1789.
11. Hernández, D.; Lindsay, K. B.; Nielsen, L.; Mittag, T.; Bjerglund, K.; Friis, S.; Mose, R.; Skrydstrup, T. J. Org. Chem. 2010, 75, 3283–3293.
12. Hernández, D.; Nielsen, L.; Lindsay, K. B.; Ángeles López-García, M.; Bjerglund, K.; Skrydstrup, T. Org. Lett. 2010, 12, 3528–3531.
13. Jia, X.-D.; Wang, X.-E.; Yang, C.-X.; Huo, C.-D.; Wang, W.-J.; Ren, Y.; Wang, X.-C. Org. Lett. 2010, 12, 732–735.
14. Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M. Angew. Chem. Int. Ed. 2014, 53, 4964–4967.
15. Rong, J.; Collados, J. F.; Ortiz, P.; Jumde, R. P.; Otten, E.; Harutyunyan, S. R. Nat. Commun. 2016, 7, 13780–13786.
16. Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem. Int. Ed., 2015, 54, 1638–1641.
17. Oestreich, M.; Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113, 402–441.
18. Hartmann, E.; Oestreich, M. Chim. Oggi 2011, 29, 34–36.
19. Walter, C.; Oestreich, M. Angew. Chem. Int. Ed., 2008, 47, 3818–3820.
20. Da, B.-C.; Liang, Q.-J.; Luo, Y.-C.; Ahmad, T.; Xu, Y.-H.; Loh, T.-P. ACS Catal. 2018, 8, 6239–6245.