rone.6 Despite lower initiation activities, the use of cata-
lysts 3 and 4 was proved to be advantageous in many
cases, particularly in reactions of electron-deficient ole-
fins.7
Or th o- a n d P a r a -Su bstitu ted
Hoveyd a -Gr u bbs Ca r ben es. An Im p r oved
Syn th esis of High ly Efficien t Meta th esis
In itia tor s†
Recently, Wakamatsu and Blechert8 have shown that
the complex 5, substituted ortho to the chelating isopro-
poxy ligand, initiates dramatically faster than the parent
catalyst 3, while retaining the excellent air and moisture
stability. Our group has recently introduced the stable
5-nitro-substituted analogue 6, which was shown to
exhibit impressive activity in ring-closing (RCM), cross
(CM), and enyne metathesis.10 As a result, this highly
active catalyst has found a successful application in
target-oriented syntheses.10c-e The higher activity of 5
may be the result of faster initiation of the catalytic cycle
as a result of a more facile release of the sterically
demanding phenyl-substituted benzylidene.9,10 Similarly,
the electron-withdrawing NO2 para to the ligating i-PrO
in 6 would weaken O f Ru chelation and facilitate faster
initiation of the catalytic cycle.10
Robert Bujok,‡ Michal Bieniek,‡ Marek Masnyk,‡
Anna Michrowska,‡ Agata Sarosiek,‡,§
Halszka Ste¸powska,‡ Dieter Arlt,*,|, and Karol Grela*,‡
Institute of Organic Chemistry, Polish Academy of Sciences,
Kasprzaka 44/ 52, Warsaw, 01-224, Poland,
LIGAND Chemie GmbH, Papenhauser Str. 10,
Lemgo, D-32657, Germany, Institut fu¨r Organische Chemie
der Universita¨t zu Ko¨ln, Greinstr. 4, 50939 Ko¨ln, Germany
prof.arlt@t-online.de; grela@icho.edu.pl
Received May 9, 2004
Abstr a ct: A novel highly efficient and general route to
various 3- and 5-substituted 2-alkoxystyrenes, required for
the preparation of Hoveyda-Grubbs catalysts, is described.
Over the past few years, the olefin metathesis has been
applied with increased frequency in organic chemistry.
The tremendous success of this transformation is largely
due to discovery of active, well-defined first-generation
((PCy3)2Cl2RudCHPh, 1) and second-generation (2) ru-
thenium alkylidene complexes, which combine high cata-
lytic activity with almost ideal functional group toler-
ance.1 The chromatography-stable phosphane-free com-
plex 3, described by Hoveyda et al.,2-4 initiates more
slowly than the highly active Grubbs' benzylidene 2.5
Recently, we have described the similarly stable and
reusable catalyst 4, prepared from an inexpensive R-asa-
To explore the synthetic potential of 5 and 6 and to
study structure-activity relationships in Hoveyda-type
complexes 5-8 (Scheme 2), a simple and general syn-
thetic route to various 3- and 5-substituted 2-alkoxysty-
renes was required.11 The described preparation of
5-nitro-2-isopropoxystyrene, a substrate for 6, consists
of alkylation of the commercially available 2-hydroxy-5-
nitrobenzaldehyde followed by Wittig reaction (49%
overall yield).10 The latter transformation is not practical
for larger scale operations as it requires column chro-
matography to remove the triphenyl phosphine oxide
(6) (a) Grela, K.; Kim, M. Eur. J . Org. Chem. 2003, 963-966. (b)
For an unique activity of a catalyst derived from 4 in living polymer-
ization of diynes, see: Krause, J . O.; Zarka, M. T.; Anders, U.;
Weberskirch, R.; Nuyken, O.; Buchmeiser, M. R. Angew. Chem., Int.
Ed. 2003, 42, 5965-5969.
† This work was presented at the Congress of Chemistry Lecturers-
Chemiedozententagung 2004, Dortmund, Germany, March, 7-10, 2004.
‡ Institute of Organic Chemistry, PAS.
§ Current address: Pharmaceutic Institute, Rydygiera 8, 01-793,
Warsaw, Poland.
(7) (a) Randl, S.; Gessler, S.; Wakamatsu, H.; Blechert, S. Synlett
2001, 430-432. For activation of Grubbs’ carbene 2 towards acrylo
nitrile, either via structural modifications or addition of CuCl, see: (b)
Love, J . A.; Morgan, J . P.; Trnka, T. M.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2002, 41, 4035-4037. (c) Rivard, M.; Blechert, S. Eur. J . Org.
Chem. 2003, 2225-2228. (d) Imhof, S.; Randl, S.; Blechert, S. Chem.
Commun. 2001, 1692-1693. (e) Grela, K.; Michrowska, A.; Bieniek,
M.; Kim, M.; Klajn, R. Tetrahedron 2003, 59, 4525-4531.
(8) (a) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002,
41, 2403-2405. (b) For an improved synthesis of 5, see: Dunne, A.
M.; Mix, S.; Blechert, S. Tetrahedron Lett. 2003, 44, 2733-2736.
(9) Extensive studies described in ref 8 suggest that a steric bulk
adjacent to the chelating isopropoxy moiety is the crucial factor
securing the unusually high activity of 5.
(10) (a) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem.,
Int. Ed. 2002, 41, 4038-4040. (b) Harutyunyan, S.; Michrowska, A.;
Grela, K. A Highly Active Ruthenium (Pre)catalyst for Metathesis
Reactions. In Catalysts for Fine Chemical Synthesis; Roberts, S., Ed.;
Wiley-Interscience: New York, 2004; Vol. 3, in press. For applications
of 6 in target-oriented synthesis, see the following. (c) (-)-Securinine:
Honda, T.; Namiki, H.; Kaneda, K.; Mizutani, H. Org. Lett. 2004, 6,
87-89. (d) (+)-Viroallosecurinine: Honda, T.; Namiki, H.; Watanabe,
M.; Mizutani, H. Tetrahedron Lett. 2004, 45, 5211-5213. (e) An
artificial photosynthesis model: Ostrowski, S.; Mikus, A. Mol. Diversity
2003, 6, 315-321.
| LIGAND Chemie GmbH.
Ko¨ln University.
(1) Pertinent reviews: (a) Schrock, R. R.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2003, 42, 4592-4633. (b) Trnka, T. M.; Grubbs, R. H.
Acc. Chem. Res. 2001, 34, 18-29. (c) Forstner, A. Angew. Chem., Int.
Ed. 2000, 39, 3012-3043. (d) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413-4450. (e) Schuster, M.; Blechert, S. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2037-2056. (f) Dragutan, V.; Dragutan, I.; Balaban,
A. T. Platinum Met. Rev. 2001, 45, 155-163.
(2) (a) Kingsbury, J . S.; Harrity, J . P. A.; Bonitatebus, P. J .; Hoveyda,
A. H. J . Am. Chem. Soc. 1999, 121, 791-799. (b) Garber, S. B.;
Kingsbury, J . S.; Gray, B. L.; Hoveyda, A. H. J . Am. Chem. Soc. 2000,
122, 8168-8179. (c) For
a short review on these catalysts, see:
Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J . J .; Kataoka,
O.; Garber, S. B.; Kingsbury, J . S.; Harrity, J . P. A. Org. Biomol. Chem.
2004, 2, 1-16.
(3) For syntheses of supported variants of 2, see inter alia: ref 2b
and (a) Kingsbury, J . S.; Garber, S. B.; Giftos, J . M.; Gray, B. L.;
Okamoto, M. M.; Farrer, R. A.; Fourkas, J . T.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2001, 40, 4251-4255. (b) Grela, K.; Tryznowski, M.;
Bieniek, M. Tetrahedron Lett. 2002, 43, 9055-9059. (c) Connon, S. J .;
Dunne, A. M.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 3835-
3838. (d) Dowden, J .; Savovic, J . Chem. Commun. 2001, 37-38. (e)
Yao, Q. Angew. Chem., Int. Ed. 2000, 39, 3896-3898. (f) Yao, Q.; Zhang,
Y. Angew. Chem., Int. Ed. 2003, 42, 3395-3398. (g) Connon, S. J .;
Blechert, S. Bioorg. Med. Chem. Lett. 2002, 12, 1873-1876. (h) Yao,
Q.; Zhang, Y. J . Am. Chem. Soc. 2004, 12, 74-75. (i) Yao, Q.; Motta,
A. R. Tetrahedron Lett. 2004, 45, 2447-2451.
(11) (a) For a recent application of Ru catalysts derived from 5-nitro-
2-isopropoxystyrene in polymer chemistry, see: Krause, J . O.; Nuyken,
O.; Buchmeiser, M. R. Chem. Eur. J . 2004, 10, 2029-2035. (b) Recently,
the concept of steric and electronic activation has been utilized by
Hoveyda et al. in a preparation of chiral ruthenium complexes for
asymmetric metathesis: Van Veldhuizen, J . J .; Gillingham, D. G.;
Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J . Am. Chem. Soc. 2003,
125, 12502-12508.
(4) Catalysts 1-3 are commercially available from Aldrich Chemical
Co.
(5) For a comparison of relative initiation rates of 2 and 3, see: refs
6, 8a,b, and 10.
10.1021/jo049222w CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/27/2004
6894
J . Org. Chem. 2004, 69, 6894-6896