1380
J. M. Ralph et al. / Tetrahedron Letters 50 (2009) 1377–1380
O2N
O2N
N
ii
i
N
N CH3
N
CH3
O
CH3
17
10
O2N
O2N
N
iii
N
N CH3
N CH3
O
CH3
H2N
HN
NH
N
CH3
N
N
N
N
N
HN
N
CH3
H3C
19
18
15
Scheme 5. Reaction conditions: (i) Ac2O, concd H2SO4 (cat), 64%; (ii) DMF di-t-butylacetal, DMF, 91%; (iii) K2CO3, DMF, 62%.
Adams, J. L.; Faitg, Thomas, H.; Ralph, J. M.; Silva, D. J. Int. Patent
WO2007024843, 2007.
2. (a) Rheinheimer, J.; Eicken, K.; Rose, I.; Grote, T.; Ammermann, E.; Speakman, J.
-B.; Strathmann, S.; Lorenz, G. Int. Patent WO2001030154, 2001.; (b) Mueller,
U.; Eberle, M.; Pillonel, C. Int. Patent WO 2003049542, 2003.
3. (a) Schofield, K.; Grimmet, M. R.; Keene, B. R. T.. In Heteroaromatic Nitrogen
Compounds. In The Azoles; Cambridge University Press: London, 1976; (b)
Bailey, D. M.; Hansen, P. E.; Hlavac, A. G.; Baizman, E. R.; Pearl, J.; DeFelice, A. F.;
Feigenson, M. E. J. Med. Chem. 1985, 28, 256; (c) Olivera, R.; SanMartin, R.;
Dominguez, E. J. Org. Chem. 2000, 65, 7010.
4. Interestingly, reaction of the 1-H-N-pyrazole with isocyanates or acyl chlorides
afforded the beta isomer preferentially, in a 10:1 ratio or greater.
5. HPLC analysis of the crude reaction mixture showed a b-to-a ratio of 11:1.
6. (a) Bredereck, H.; Effenberger, F.; Bosch, H. B. Dtsch. Chem. Ges. 1964, 97, 3397;
(b) Gudmundsson, K.; Johns, B. Org. Lett. 2003, 5, 1369.
group, followed by urea formation, afforded the desired target 16.
This second route is highly convergent, consisting of eight linear
steps from 8 (plus the required synthesis of the guanidine 19) with
very good overall yield.
In summary, two novel, highly efficient, and scalable routes to
trisubstituted 1-alkyl-3-aryl-4-[pyrimidin-4-yl]-pyrazoles were
developed. Both the routes are based on the highly regioselective
b-alkylation of 1-H-3-aryl-4-H-pyrazoles, eliminating the need
for potentially cumbersome isomer separation. In addition, the
synthetic routes described allow for convenient introduction of
diversity at the R1 and R3 positions. Detailed biological data for
this class of compounds will be published elsewhere.
Two novel, regioselective, and scalable routes to trisubstituted
1-alkyl-3-aryl-4-[pyrimidin-4-yl]-pyrazoles have been developed.
These routes allow for the easy isolation of the desired b-substi-
tuted pyrazole and for the efficient SAR exploration around the
central core.
7. (a) Johns, B. A.; Gudmundsson, K. S.; Turner, E. M.; Allen, S. H.; Jung, D. K.;
Sexton, C. J.; Boyd, F. L.; Peel, M. R. Tetrahedron 2003, 59, 9001; (b) Stevens, K.
L.; Jung, D. K.; Alberti, M. J.; Badiang, J. G.; Peckham, G. E.; Veal, J. M.; Cheung,
M.; Harris, P. A.; Chamberlain, S. D.; Peel, M. R. Org. Lett. 2005, 7, 4753.
8. Compound 17 was also prepared from 9 in similar overall yield using a longer
synthetic sequence based on the 4-iodo pyrazole intermediate shown below:
1. Cu, PdCl2(PPh3)2
1. NIS, DMF
TMS-acetylene,
toluene, Et3N
2. TFA, water, CH2Cl2
2. MeI, NaH
3. recrystallization
from EtOH
Supplementary data
O2N
17
9
Supplementary data associated with this article can be found, in
N
98% (2 steps)
65% (over 3 steps)
N
CH3
I
9. Tavares, F. X.; Boucheron, J. A.; Dickerson, S. H.; Griffin, R. J.; Preugschat, F.;
Thomson, S. A.; Wang, T. Y.; Zhou, H.-Q. J. J. Med. Chem. 2004, 47, 4716.
10. The enaminone was also prepared by reaction of the arylmethylketone with
DMF–DMA as the solvent, but the yield was lower.
11. Guanidine 19 was prepared by treating 3-(4-methyl-piperazin-1-yl)-aniline
with 1,3-bis(tert-butoxy-carbonyl)guanidine, followed by deprotection with
12 N HCl.
References and notes
1. (a) Fraley, M. E.; Peckham, J. P.; Arrington, K. L.; Hoffman, W. F.; Hartman, G. D.
Int. Patent WO2003011837, 2003.; (b) Furet, P.; Imbach, P.; Ramsey, T. M.;
Schlapbach, A.; Scholz, D.; Caravatti, G. Int. Patent WO2004005282, 2004.; (c)
Ledeboer, M.; Salituro, F.; Moon, Y.-C. Int. Patent WO 2002046184, 2002.; (d)