Journal of Natural Products
Article
C15H24O3, M = 252.34, 0.50 × 0.33 × 0.10 mm3, orthorhombic,
space group P212121 (no. 19), a = 5.7974(5) Å, b = 14.3683(13) Å,
c = 16.0292(13) Å, V = 1335.2(2) Å3, Z = 4, Dc = 1.255 g cm−3,
μ = 0.085 mm−1. F000 = 552, 2θmax = 50.1°, 2507 reflections collected,
2507 unique (Rint = 0.1619). Final GOOF = 1.063, R1 = 0.0533,
wR2 = 0.1229, R indices based on 2180 reflections with I > 2σ(I)
(refinement on F2), |Δρ|max= 0.281 e Å−3, 157 parameters, 0 restraints.
X-ray Crystal Data for 23. From a solution of CDCl3 (10 mg in
0.7 mL), 23 was obtained as colorless platelets. Crystallogrpahic
data were collected at 100.0(1) K on a XtaLAB Synergy/Dualflex,
HyPix fitted using Cu Kα, λ = 1.541 84 Å, followed by empirical
absorption correction using spherical harmonics, implemented in
SCALE3 ABSPACK23 scaling algorithm. The structure was solved
by direct methods (OLEX224 and ShelXT)25 and refined against
F2 with full-matric least-squares using the program ShelXL.26 All
non-hydrogen atoms were refined with anisotropic displacement
parameters. All hydrogen atoms were placed on calculated positions
and refined using the riding model with isotopic displacement param-
eters based on those of the parent atom.
Hadi D. Arman − Department of Chemistry, The University
of Texas at San Antonio (UTSA), San Antonio, Texas
78249-0698, United States
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported through the Bill & Melinda
Gates Foundation [OPP1188432] and the Max and Minnie
Tomerlin Voelcker Fund. Francis K. Yoshimoto PhD holds a
Voelcker Fund Young Investigator Award from the MAX
AND MINNIE TOMERLIN VOELCKER FUND. The
UTSA RISE program is also acknowledged for supporting a
research stipend for Ms. Kaitlyn Varela. NSF MRI grant for
X-ray diffraction (Award No. 1920057) and NSF MRI grant
for NMR spectrometer (Award No. 1625963) are also acknowl-
edged. This manuscript is dedicated to Dr. Trevor Laird, on the
occasion of his 75th birthday and for his guidance and support
throughout this funded research project. We are truly grateful
for the reviewers of this manuscript, who have significantly
improved the quality of this paper by suggesting additional
insightful experiments and providing their valuable, expert
opinion.
The crystallographic data can be obtained free of charge via
Crystallographic Data Center, 12 Union Road, Cambridge CB2
ac.uk. CCDC number 2061811.
C15H28O3, M = 256.37, 0.25 × 0.20 × 0.02 mm3, triclinic, space
group P1 (no. 1), a = 7.4494(4) Å, b = 9.7601(4) Å, c =
11.3665(6) Å, α = 76.475(4)°, β = 86.519(4)°, γ = 67.953(4)°, V =
744.41(7) Å3, Z = 2, Dc = 1.144 g cm−3, μ = 0.612 mm−1. F000
=
284, 2θmax = 125.0°, 11 239 reflections collected, 3514 unique
(Rint = 0.0706). Final GOOF = 1.111, R1 = 0.0677, wR2 = 0.1532, R
indices based on 3254 reflections with I > 2σ(I) (refinement on F2),
|Δρ|max= 0.345 e Å−3, 337 parameters, 7 restraints.
REFERENCES
■
(1) Wallart, T. E.; van Uden, W.; Lubberink, H. G. M.;
Woerdenbag, H. J.; Pras, N.; Quax, W. J. J. Nat. Prod. 1999, 62,
430−433.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
sı
(2) Pandey, A. V.; Tekwani, B. L.; Singh, R. L.; Chauhan, V. S. J.
Biol. Chem. 1999, 274, 19383−19388.
(3) Krishna, S.; Bustamante, L.; Haynes, R. K.; Staines, H. M.
Trends Pharmacol. Sci. 2008, 29, 520−527.
LC-HRMS and NMR analysis of DHAA isotopologues;
1D and 2D NMR data of compound 47; description of
time course experiments of DHAA to artemisinin;
description of KIE experiments; description of experi-
ments involving 18O2 with DHAA; NMR spectra, high-
resolution mass spectra, and IR spectra of synthesized
compounds; HRMS data of time course experiments;
HRMS data of KIE experiments; HRMS data of 18O2
experiments; preliminary studies on the synthesis of
15,15,15-d3-DHAA; X-ray crystallography data of
compounds 1, 2, 22, and 23; and extra experiments
to determine that benzoic acid can promote the
conversion of DHAA to artemisinin (PDF)
(4) Amara, Z.; Bellamy, J. F. B.; Horvath, R.; Miller, S. J.; Beeby,
A.; Burgard, A.; Rossen, K.; Poliakoff, M.; George, M. W. Nat.
Chem. 2015, 7, 489−495.
(5) Levesque, F.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51,
1706−1709.
(6) Lee, D. S.; Amara, Z.; Clark, C. A.; Xu, Z.; Kakimpa, B.;
Morvan, H. P.; Pickering, S. J.; Poliakoff, M.; George, M. W. Org.
Process Res. Dev. 2017, 21, 1042−1050.
(7) Demiray, M.; Tang, X.; Wirth, T.; Faraldos, J. A.; Allemann, R.
K. Angew. Chem., Int. Ed. 2017, 56, 4347−4350.
(8) Elsherbini, M.; Allemann, R. K.; Wirth, T. Chem. - Eur. J. 2019,
25, 12486−12490.
(9) Krishna, S.; Woodrow, C. J.; Staines, H. M.; Haynes, R. K.;
Mercereau-Puijalon, O. Trends Mol. Med. 2006, 12, 200−205.
(10) Eckstein-Ludwig, U.; Webb, R. J.; van Goethem, I. D. A.;
East, J. M.; Lee, A. G.; Kimura, M.; O’Neill, P. M.; Bray, P. G.;
Ward, S. A.; Krishna, S. Nature 2003, 424, 957−961.
(11) Bryant, L.; Flatley, B.; Patole, C.; Brown, G. D.; Cramer, R.
BMC Plant Biol. 2015, 15, 175.
(12) Brown, G. D.; Sy, L.-K. Tetrahedron 2004, 60, 1139−1159.
(13) Sy, L.-K.; Brown, G. D. Tetrahedron 2002, 58, 897−908.
(14) Sy, L.-K.; Brown, G. D. Tetrahedron 2002, 58, 909−923.
(15) Acton, N.; Roth, R. J. J. Org. Chem. 1992, 57, 3610−3614.
(16) Varela, K.; Arman, H. D.; Yoshimoto, F. K. J. Nat. Prod. 2020,
83, 66−78.
AUTHOR INFORMATION
Corresponding Author
Francis K. Yoshimoto − Department of Chemistry, The
University of Texas at San Antonio (UTSA), San Antonio,
■
(17) Rej, R. K.; Acharyya, R. K.; Nanda, S. Tetrahedron 2016, 72,
4931−4937.
Authors
(18) Lin, A. J.; Klayman, D. L.; Hoch, J. M.; Silverton, J. V.;
George, C. F. J. Org. Chem. 1985, 50, 4504−4508.
(19) Adam, W.; Krebs, O.; Orfanopoulos, M.; Stratakis, M.;
Vougiokalaki, G. C. J. Org. Chem. 2003, 68, 2420−2425.
Kaitlyn Varela − Department of Chemistry, The University of
Texas at San Antonio (UTSA), San Antonio, Texas
78249-0698, United States
1983
J. Nat. Prod. 2021, 84, 1967−1984