FREE RADICAL RESEARCH
9
ꢁ
[16] Abbas K, Hardy M, Poulhes F, et al. Detection of
superoxide production in stimulated and unstimulated
living cells using new cyclic nitrone spin traps. Free
Radic Biol Med. 2014;71:281–290.
References
[1] Payen VL, Zampieri LX, Porporato PE, et al. Pro- and
antitumor effects of mitochondrial reactive oxygen
species. Cancer Metastasis Rev. 2019;38(1-2):189–203.
[17] Scheinok S, Leveque P, Sonveaux P, et al. Comparison
of different methods for measuring the superoxide
radical by EPR spectroscopy in buffer, cell lysates and
cells. Free Radic Res. 2018;52(10):1182–1196.
[18] Yordanov AT, Yamada K, Krishna MC, et al. Acyl-pro-
tected hydroxylamines as spin label generators for
ꢀ
[2] Porporato PE, Payen VL, Perez-Escuredo J, et al. A
mitochondrial switch promotes tumor metastasis. Cell
Rep. 2014;8(3):754–766.
[3] Zhelev Z, Bakalova R, Aoki I, et al. Imaging of super-
oxide generation in the dopaminergic area of the
brain in Parkinson’s disease, using Mito-TEMPO. ACS
Chem Neurosci. 2013;4(11):1439–1445.
[4] Dikalova AE, Bikineyeva AT, Budzyn K, et al.
Therapeutic targeting of mitochondrial superoxide in
hypertension. Circ Res. 2010;107(1):106–116.
[5] Zielonka J, Joseph J, Sikora A, et al. Mitochondria-tar-
geted triphenylphosphonium-based compounds: syn-
theses, mechanisms of action, and therapeutic and
diagnostic applications. Chem Rev. 2017;117(15):
10043–10120.
[6] Murphy MP, Smith R. Targeting antioxidants to mito-
chondria by conjugation to lipophilic cations. Annu
Rev Pharmacol Toxicol. 2007;47(1):629–656.
[7] Reily C, Mitchell T, Chacko BK, et al. Mitochondrially
targeted compounds and their impact on cellular bio-
energetics. Redox Biol. 2013;1(1):86–93.
[8] Rossman MJ, Santos-Parker JR, Steward CAC, et al.
Chronic supplementation with a mitochondrial anti-
oxidant (MitoQ) improves vascular function in healthy
older adults. Hypertension. 2018;71(6):1056–1063.
[9] Smith RAJ, Murphy MP. Animal and human studies
with the mitochondria-targeted antioxidant MitoQ.
Ann N Y Acad Sci. 2010;1201(1):96–103.
[10] Cheng G, Zielonka J, McAllister D, et al.
Antiproliferative effects of mitochondria-targeted cat-
ionic antioxidants and analogs: role of mitochondrial
bioenergetics and energy-sensing mechanism. Cancer
Lett. 2015;365(1):96–106.
EPR brain imaging.
2283–2288.
J Med Chem. 2002;45(11):
[19] Dikalov SI, Li W, Mehranpour P, et al. Production of
extracellular superoxide by human lymphoblast cell
lines: comparison of electron spin resonance techni-
ques and cytochrome C reduction assay. Biochem
Pharmacol. 2007;73(7):972–980.
[20] Frezza C, Cipolat S, Scorrano L. Organelle isolation:
functional mitochondria from mouse liver, muscle
and cultured fibroblasts. Nat Protoc. 2007;2(2):
287–295.
[21] Driesschaert B, Bobko AA, Khramtsov VV, et al. Nitro-
triarylmethyl radical as dual oxygen and superoxide
probe. Cell Biochem Biophys. 2017;75(2):241–246.
[22] Klug D, Rabani J, Fridovich I. A direct demonstration
of the catalytic action of superoxide dismutase
through the use of pulse radiolysis. J Biol Chem. 1972;
247(15):4839–4842.
[23] Dhanasekaran A, Kotamraju S, Karunakaran C, et al.
Mitochondria superoxide dismutase mimetic inhibits
peroxide-induced oxidative damage and apoptosis:
role of mitochondrial superoxide. Free Radic Biol Med.
2005;39(5):567–583.
ꢀ
[24] Cocheme HM, Murphy MP. Complex I is the major site
of mitochondrial superoxide production by paraquat.
J Biol Chem. 2008;283(4):1786–1798.
[11] Dikalova AE, Kirilyuk IA, Dikalov SI. Antihypertensive
effect of mitochondria-targeted proxyl nitroxides.
Redox Biol. 2015;4:355–362.
[12] Cheng G, Zielonka J, Ouari O, et al. Mitochondria-tar-
geted analogues of metformin exhibit enhanced anti-
proliferative and radiosensitizing effects in pancreatic
cancer cells. Cancer Res. 2016;76(13):3904–3915.
[25] Soule BP, Hyodo F, Matsumoto K, et al. The chemistry
and biology of nitroxide compounds. Free Radic Biol
Med. 2007;42(11):1632–1650.
[26] Hawkins CL, Davies MJ. Detection and characterisation
of radicals in biological materials using EPR method-
ology. Biochim Biophys Acta. 2014;1840(2):708–721.
[27] Zhang R, Goldstein S, Samuni A. Kinetics of super-
oxide-induced exchange among nitroxide antioxidants
and their oxidized and reduced forms. Free Radic Biol
Med. 1999;26(9-10):1245–1252.
ꢀ
[13] Hardy M, Rockenbauer A, Vasquez-Vivar J, et al.
Detection, characterization, and decay kinetics of ROS
and thiyl adducts of Mito-DEPMPO spin TRAP. Chem
Res Toxicol. 2007;20(7):1053–1060.
[28] Krishna MC, Grahame DA, Samuni A, et al.
Oxoammonium cation intermediate in the nitroxide-
catalyzed dismutation of superoxide. Proc Natl Acad
Sci U S A. 1992;89(12):5537–5541.
ꢀ
[14] Hardy M, Poulhes F, Rizzato E, et al. Mitochondria-tar-
geted spin traps: synthesis, Superoxide spin trapping,
and mitochondrial uptake. Chem Res Toxicol. 2014;
27(7):1155–1165.
[29] Wilcox CS. Effects of tempol and redox-cycling nitro-
xides in models of oxidative stress. Pharmacol Ther.
2010;126(2):119–145.
[15] Dikalov SI, Kirilyuk IA, Voinov M, et al. EPR detection
of cellular and mitochondrial superoxide using cyclic
hydroxylamines. Free Radic Res. 2011;45(4):417–430.