16 P. M. England, H. A. Lester and D. A. Dougherty, Biochemistry,
1999, 38, 14409.
17 C. Toniolo and E. Benedetti, Macromolecules, 1991, 24, 4004.
18 C. Toniolo, M. Crisma, F. Formaggio, G. Valle, G. Cavicchioni,
G. Précigoux, A. Aubry and J. Kamphuis, Biopolymers, 1993, 33,
1061.
19 G. Valle, M. Crisma, C. Toniolo, S. Polinelli, W. H. J. Boesten, H. E.
Schoemaker, E. M. Meijer and J. Kamphuis, Int. J. Pept. Protein
Res., 1991, 37, 521.
20 C. Toniolo, M. Crisma, G. M. Bonora, B. Klajc, F. Lelj, P. Grimaldi,
A. Rosa, S. Polinelli, W. H. J. Boesten, E. M. Meijer, H. E.
Schoemaker and J. Kamphuis, Int. J. Pept. Protein Res., 1991, 38,
242.
21 F. Formaggio, M. Pantano, G. Valle, M. Crisma, G. M. Bonora,
S. Mammi, E. Peggion, C. Toniolo, W. H. J. Boesten, H. E.
Schoemaker and J. Kamphuis, Macromolecules, 1993, 26, 1848.
22 A. Polese, F. Formaggio, M. Crisma, G. Valle, C. Toniolo, G. M.
Bonora, Q. B. Broxterman and J. Kamphuis, Chem. Eur. J., 1996, 2,
1104.
23 C. M. Venkatachalam, Biopolymers, 1968, 6, 1425.
24 C. Toniolo, CRC Crit. Rev. Biochem., 1980, 9, 1.
25 G. D. Rose, L. M. Gierasch and J. A. Smith, Adv. Protein Chem.,
1985, 37, 1.
26 C. Toniolo and E. Benedetti, Trends Biochem. Sci., 1991, 16, 350.
27 A. Polese, S. Mondini, A. Bianco, C. Toniolo, G. Scorrano, D. M.
Guldi and M. Maggini, J. Am. Chem. Soc., 1999, 121, 3446.
28 A. Bianco, F. Gasparrini, M. Maggini, D. Misiti, A. Polese, M.
Prato, G. Scorrano, C. Toniolo and C. Villani, J. Am. Chem. Soc.,
1997, 119, 7550.
29 C. Sissi, P. Rossi, F. Felluga, F. Formaggio, M. Palumbo, P. Tecilla,
C. Toniolo and P. Scrimin, J. Am. Chem. Soc., 2001, 123, 3169.
30 K. Mori, T. Ebata and S. Takechi, Tetrahedron, 1984, 40, 1761.
31 F. Effenberger, B. Hörsch, F. Weingart, T. Ziegler and S. Kühner,
Tetrahedron Lett., 1991, 32, 2605.
32 H. Griengl, N. Klempier, P. Pöchlauer, M. Schmidt, N. Shi and
A. A. Zabelinskaja-Mackova, Tetrahedron, 1998, 54, 14477.
33 G. M. Sheldrick, SHELXS 97. Program for Crystal Structure
Determination, University of Göttingen, Germany, 1997.
34 G. M. Sheldrick, SHELXL 97. Program for Crystal Structure
Refinement, University of Göttingen, Germany, 1997.
35 H. Schwarz, F. M. Bumpus and I. H. Page, J. Am. Chem. Soc., 1957,
79, 5697.
36 R. A. Boissonnas, S. Guttmann, R. L. Huguenin, P. A. Jaquenoaud
and E. Sandrin, Helv. Chim. Acta, 1958, 41, 1867.
37 W. König and R. Geiger, Chem. Ber., 1970, 103, 788.
38 C. Toniolo, G. M. Bonora, F. Formaggio, M. Crisma, A. Bavoso,
E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, Gazz. Chim.
Ital., 1988, 118, 47.
39 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397.
40 E. F. V. Scriven, Chem. Soc. Rev., 1983, 12, 129.
41 L. A. Carpino, E. S. M. E. Mansour and D. Sadat-Aalaee, J. Org.
Chem., 1991, 56, 2611.
42 G. W. Anderson and A. C. McGregor, J. Am. Chem. Soc., 1957, 79,
6180.
N4–H4 ؒ ؒ ؒ O1᎐C1 (molecule A peptide), and (molecule C
᎐
peptide) N6–H6 ؒ ؒ ؒ O3᎐C3 (molecule B peptide) give rise to
᎐
B–A–C–B–A–C chains of molecules along the a,c direction.
The crystal packing mode for the pentadepsipeptide Ac-
-(αMe)Hyv-(Aib)4-OMe is characterized by (peptide) N2–
H2 ؒ ؒ ؒ O4᎐C4 (peptide) intermolecular H-bonds, generating
᎐
rows of molecules along the c direction. In the crystals of the
related pentapeptide Ac-(Aib)5-OMe two different types of inter-
molecular H-bonds link the molecules in a head-to-tail fashion
along the a,c direction, a strong (amide) N1–H1 ؒ ؒ ؒ O4᎐C4
᎐
(peptide) H-bond and a weak (peptide) N2–H2 ؒ ؒ ؒ O5᎐C5
᎐
(ester) H-bond.61–63
Conclusions
In this paper we have reported the stereospecific synthesis of
the α-hydroxy acid -(αMe)Hyv by a combined chemical and
enzymatic approach. Due to the extremely poor reactivity of
its hydroxy function, we successfully incorporated -(αMe)Hyv
in an internal position of the peptide chain only by taking
advantage of a recently proposed method for the acylation of
sterically hindered tertiary alcohols which concomitantly
exploits the Lewis acid scandium() triflate and the tertiary
amine DMAP as catalysts.43,44 For the same reason, addition
of -(αMe)Hyv at the N-terminus of a peptide chain is particu-
larly straightforward as this reaction does not even require
O-protection.
In the X-ray diffraction structures of all four molecules of
the two depsipeptides containing an O-acylated -(αMe)Hyv
residue that were solved in this work, this first chiral Cα-
tetrasubstituted α-hydroxy acid studied to date is right-handed
helical (with average φ, ψ torsion angles Ϫ55.1, Ϫ46.1Њ) as
expected on the basis of the well known gem-dialkyl effect.69
This structural property, making it ideally suited for the stab-
ilization of β-turn and 310/α-helices in depsipeptides, strictly
reflects the published propensity of the parent Hib α-hydroxy
acid.8,9 The conformational tendency of -(αMe)Hyv also
closely resembles that of the related chiral, Cα-tetrasubstituted
α-amino acid -(αMe)Val.18–22 It is also worth noting that
replacement with -(αMe)Hyv of a single residue in the inter-
molecular β-sheet forming sequence -(-Val)4- is sufficient to
disrupt this ordered self-associated secondary structure. Taken
together, these results support the view that the -(αMe)Hyv
residue represents an additional valuable tool for the design and
synthesis of conformationally constrained, folded depsipeptides.
43 H. Zhao, A. Pendri and R. B. Greenwald, J. Org. Chem., 1998, 63,
References
7559.
1 Ch. M. Krell and D. Seebach, Eur. J. Org. Chem., 2000, 1207.
2 D. Seebach and M. G. Fritz, Int. J. Biol. Macromol., 1999, 25,
217.
3 C. Aleman, B. Lotz and J. Puiggali, Macromolecules, 2001, 34, 4795.
4 M. Dobler, in Ionophores and Their Structures, Wiley, New York,
1981.
5 V. T. Ivanov and I. I. Mikhaleva, in Houben-Weyl, Science of
Synthesis, 2002, Vol. E22c; in the press.
6 G. Boussard, M. Marraud, J. Néel, B. Maigret and A. Aubry,
Biopolymers, 1977, 16, 1033.
7 T. Ohyama, H. Oku, A. Hiroki, Y. Malekawa, M. Yoshida and
R. Katakai, Biopolymers, 2000, 54, 375.
8 M. Crisma, G. Valle, G. M. Bonora, C. Toniolo and G. Cavicchioni,
Int. J. Pept. Protein Res., 1993, 41, 553.
9 G. Valle, R. Bardi, A. M. Piazzesi, M. Crisma, C. Toniolo, G.
Cavicchioni, K. Uma and P. Balaram, Biopolymers, 1991, 31, 1669.
10 T. Kato, H. Mizuno, S. Lee, H. Aoyagi, H. Kodama, N. Go and
T. Kato, Int. J. Pept. Protein Res., 1992, 39, 485.
11 M. Goodman, Y. V. Venkatachalapathi, S. Mammi and R. Katakai,
J. Biosci., 1985, 8, 223.
44 M. Lee and D. H. Kim, Bioorg. Med. Chem., 2000, 8, 815.
45 L. S. Lin, T. Lanza, Jr., S. E. de Laszlo, Q. Truong, T. Kamenecka
and W. K. Hagmann, Tetrahedron Lett., 2000, 41, 7013.
46 G. M. Bonora, C. Mapelli, C. Toniolo, R. R. Wilkening and E. S.
Stevens, Int. J. Biol. Macromol., 1984, 6, 179.
47 M. T. Cung, M. Marraud and J. Néel, Ann. Chim. (Paris), 1972, 7,
183.
48 C. Toniolo, M. Pantano, F. Formaggio, M. Crisma, G. M. Bonora,
A. Aubry, D. Bayeul, A. Dautant, W. H. J. Boesten, H. E.
Schoemaker and J. Kamphuis, Int. J. Biol. Macromol., 1994, 16, 7.
49 C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti,
B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone and C. Pedone,
Macromolecules, 1985, 18, 895.
50 K. D. Kopple, M. Ohnishi and A. Go, Biochemistry, 1969, 8, 4087.
51 D. Martin and G. Hauthal, in Dimethyl Sulphoxide, Van Nostrand-
Reinhold, Wokingham, UK, 1975.
52 IUPAC-IUB Commission on Biochemical Nomenclature,
Biochemistry, 1970, 9, 3471.
53 N. Shamala, R. Nagaraj and P. Balaram, J. Chem. Soc., Chem.
Commun., 1978, 996.
12 O. Arad and M. Goodman, Biopolymers, 1990, 29, 1651.
13 M. Baca and S. B. Kent, Tetrahedron, 2000, 56, 9503.
14 G. S. Beligere and Ph. E. Dawson, J. Am. Chem. Soc., 2000, 122,
12079.
54 E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone,
M. Crisma, G. M. Bonora and C. Toniolo, J. Am. Chem. Soc., 1982,
104, 2437.
55 W. B. Schweizer and J. D. Dunitz, Helv. Chim. Acta, 1982, 65,
1547.
15 J. T. Koh, V. W. Cornish and P. G. Schultz, Biochemistry, 1997, 36,
11314.
56 P. Chakrabarti and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1555.
650
J. Chem. Soc., Perkin Trans. 2, 2002, 644–651