C. Alvarado et al. / Tetrahedron Letters 48 (2007) 603–607
607
5. Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tuinman, A. A.;
Boettner, F. E.; Kizu, H.; Schmidt, J. M.; Baczynskyj, L.;
Tomer, K. B.; Bontems, R. J. J. Am. Chem. Soc. 1987,
109, 6883–6885.
6. Luesch, H.; Williams, P. G.; Yoshida, W. Y.; Moore, R.
E.; Paul, V. J. J. Nat. Prod. 2002, 65, 996–1000.
7. (a) McDermott, J. R.; Benoiton, N. L. Can. J. Chem.
1973, 51, 2555–2561; (b) Coggins, J. R.; Benoiton, N. L.
Can. J. Chem. 1971, 49, 1968–1977.
8. Gissin, B. F.; Merrifield, R. B.; Tosteson, D. C. J. Am.
Chem. Soc. 1969, 91, 2691–2695.
9. Boger, D. L.; Chen, J.-H.; Saionz, K. W. J. Am. Chem.
Soc. 1996, 118, 1629–1644.
10. Kimura, J.; Takada, Y.; Inayoshi, T.; Nakao, Y.; Goetz,
G.; Yoshida, W. Y.; Scheuer, P. J. J. Org. Chem. 2002, 67,
1760–1767.
11. (a) Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Tetra-
hedron Lett. 1976, 17, 2455–2458; (b) Schmidt, U.; Utz, R.
Angew. Chem., Int. Ed. Engl. 1984, 23, 725–726; (c)
Schmidt, U.; Gleich, P.; Griesser, H.; Utz, R. Synthesis
1986, 992–997; For a review see: Mitzunobu, O. Synthesis
1981, 1–28.
12. (a) Bredenkamp, M. W.; Holzapfel, C. W.; van Zyl, W. J.
Synth. Commun. 1990, 20, 2235–2249; (b) Aguilar, E.;
Meyers, A. I. Tetrahedron Lett. 1994, 35, 2473–2476; (c)
Xia, Z.; Smith, C. D. J. Org. Chem. 2001, 66, 3459–3466.
13. (a) Anderson, G. W.; Callahan, F. M. J. Am. Chem. Soc.
1960, 82, 3359–3363; (b) Bodanszky, M. The Practice of
Peptide Synthesis, 2nd ed.; Springer-Verlag: Berlin, 1993,
pp 38–40; (c) Ward, D. E.; Gai, Y.; Lazny, R.; Pedras, M.
S. C. J. Org. Chem. 2001, 66, 7832–7840; (d) Mc Dermot,
J. R.; Benoiton, N. L. Can. J. Chem. 1973, 51, 2562–2570;
(e) Tung, R.; Dhaon, M.; Rich, D. J. Org. Chem. 1986, 51,
3350–3354; (f) Galpin, I. J.; Mohammed, A. K.; Patel, A.;
Priestley, G. Tetrahedron. 1988, 44, 1763–1772.
3. Synthesis of dipeptide 8
N-Cbz-L-Phenylalanine 3a was selectively N-methylated
with methyl iodide (sodium hydride) giving 3b (Scheme
4). Cbz-L-valine 2a was converted into the t-butyl ester
2b with 2-methylpropene under acidic conditions, and
then hydrogenolyzed to L-valine t-butyl ester (2c).13
Compounds 2c and 3b were then coupled using the
DCC–HOBt mixture to afford the dipeptide 23. Sequen-
tial methylation of the valine amido NH of 23 with
methyl iodide in the presence of sodium hydride and
hydrogenolysis generated dipeptide 8.
4. Synthesis of depsipentapeptide 24, and cyclization
to ulongamide A14
The optimum conditions found for the coupling of 7 and
8 utilized BOP in dichloromethane solution. The penta-
peptide 24 (55% yield, Scheme 5) so obtained was depro-
tected with trifluoroacetic acid (TFA), and the crude
product, after removal of the TFA in vacuo and dilution
with DMF, was cyclized to ulongamide A (1, 60% yield)
with BOP. The spectral properties15 of synthetic ulonga-
mide A were fully concordant with those reported6 for
the natural product.
Acknowledgements
We thank DGAPA-UNAM (PAPIIT-IN210405) for its
generous financial support. We also thank CONACYT
for a doctoral grant to C. Alvarado, and we gratefully
acknowledge the helpful assistance of the spectroscopic
14. (a) Wenger, R. M. Helv. Chim. Acta 1984, 67, 502–525; (b)
Jones, J. The Chemical Synthesis of Peptides; Clarendon
Press: Oxford, 1994, pp 175–182.
15. Physical and spectroscopic constants of ulongamide A 1.
´
staff of the Instituto de Quımica (UNAM). The authors
25
White, amorphous solid, mp 85 °C.; ½aꢁD +12 (c 0.73,
acknowledge Dr. Joseph M. Muchowski for the revision
of the original manuscript.
MeOH); IR (film) mmax 3321, 2962, 2934, 2872, 1734,
1672, 1633, 1553, 1522, 1497, 1462, 1271, 1216, 1078, 1048;
1H NMR (500 MHz, CDCl3): d 8.94 (d, 1H, J = 10.5),
8.17 (d, 1H, J = 7.0), 8.04 (s, 1H), 7.29 (t, 2H), 7.24 (t,
1H), 7.17 (d, 2H), 6.08 (dd, 1H, J = 9.5, 5.5), 5.34 (q, 1H,
J = 6.5), 5.17 (q, 1H, J = 7.0), 4.51 (d, 1H, J = 11), 4.31
(m, 1H, J = 10.6, 9.0, 5.0, 2.5), 3.27 (dd, 1H, J = 9.5,
15.0), 3.21 (s, 3H), 3.16 (dd, 1H, J = 5.5, 15.0), 2.99 (s,
3H), 2.70 (dq, 1H, J = 7.0, 2.5), 2.33 (m, 1H), 1.46 (d, 3H,
J = 6.8), 1.43 (m, 4H), 1.33 (d, 3H, J = 6.8), 1.23 (d, 3H,
J = 7.2), 0.97 (t, 3H, J = 7.0), 0.85 (d, 3H, J = 6.4), 0.60
(d, 3H, J = 7.0); 13C NMR (125 MHz, CDCl3): d 14.0,
14.5, 16.2, 18.3, 19.3, 19.6, 24.5, 27.3, 29.0, 30.0, 35.4, 35.5,
45.0, 47.7, 50.7, 51.0, 66.4, 67.0, 122.0, 127.0, 128.5, 128.8,
136.0, 149.1, 160.8, 167.9, 169.6, 170.4, 171.9, 172.9;
HRFABMS m/z [M+H]+ 628.3179 (calcd for
C32H46N5O6S, 628.3169).
References and notes
1. Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.;
Corbett, T. H. J. Am. Chem. Soc. 2001, 123, 5418–5423.
2. Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897–
1909.
3. Golakoti, T.; Ogino, J.; Heltzel, C. E.; Husebo, T. L.;
Jensen, C. M.; Larsen, L. K.; Patterson, G. M. L.; Moore,
R. E.; Mooberry, S. L.; Corbett, T. H.; Valeriote, F. A. J.
Am. Chem. Soc. 1995, 117, 12030–12049.
4. Trimurtulu, G.; Ohtani, I.; Patterson, G. M. L.; Moore,
R. E.; Corbett, T. H.; Valeriote, F. A.; Demchick, L. J.
Am. Chem. Soc. 1994, 116, 4729–4737.