COMMUNICATIONS
[M À C4H8], 87(100) [ M À 2C4H8]; IR (gas): nÄ 2176 cmÀ1 (P H). 3b:
b.p. 55 8C (1 mbar), yield 78%; 31P NMR (121.5 MHz, C6D6): d 71.6 (d,
1J(P,H) 219 Hz); 1H NMR (300 MHz, C6D6): d 0.99 (d, 4J(P,H)
0.7Hz, 9H), 1.33 (d, 4J(P,H) 1.7Hz, 9H), 6.16 (d, 3J(P,H) 3.3 Hz,
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill,
B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon,
E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
[15] All products were identified by comparison of their 1H and 31P NMR
data with those of authentic samples.
À
1H), 6.23 (d, 1J(P,H) 219 Hz, 1H); IR (Nujol): nÄ 2202 cmÀ1 (P H). 3c:
À
31P NMR (121.5 MHz, C6D6): d 64.0 (d, 1J(P,H) 139 Hz); 1H NMR
(300 MHz, C6D6): d 2.44 (s, 6H), 2.48 (s, 6H), 2.56 (s, 3H), 2.59 (s, 3H),
6.16 (d, 3J(P,H) 1.8 Hz, 2H), 7.04 (br, 4H), 7.13 (d,1J(P,H) 139 Hz, 1H);
3d: m.p. 87± 89 8C, yield 72%; 31P NMR (121.5 MHz, C6D6): d 75.8 (d,
1J(P,H) 147Hz); 1H NMR (300 MHz, C6D6): d 2.09 (s, 6H), 2.23 (s,
6H), 2.23 (s, 3H), 2.37(s, 3H), 5.87(d, 3J(P,H) 0.9 Hz, 1H), 6.67(s, 2H),
6.70 (s, 1H), 6.72 (s, 1H), 7.17 (d, 1J(P,H) 147Hz, 1H); MS (16 eV): m/z
[16] Characteristic spectroscopic data: 6: 31P NMR (121.5 MHz, C6D6):
d 85.9 (br d, 1J(PH) 353 Hz); 1H NMR (300 MHz, C6D6): d 1.29
(br, 3H; BH3), 2.03 (s, 9H), 2.13 (s, 3H), 2.38 (s, 3H), 2.43 (s, 3H), 5.32
(d, 3J(P,H) 10.3 Hz, 1H), 6.62 (s, 1H), 6.67(s, 1H), 6.70 (s, 2H), 8.01
(d, 1J(P,H) 353 Hz, 1H); 11B{1H} NMR (96.2 MHz, C6D6): d À34.3
(d, 1J(P,B) 52 Hz); 7: 31P NMR (121.5 MHz, C6D6): d 173 (d,
3J(P,H) 8 Hz, 1J(W,P) 765 Hz); 1H NMR (300 MHz, C6D6): d
2.05 (s, 3H), 2.06 (s, 3H), 2.27(s, 6H), 2.29 (s, 6H), 4.52 (s, 5H;
C5H5), 5.93 (d, 3J(P,H) 7.4 Hz, 1H), 6.78 (s, 2H), 6.79 (s, 2H); IR
(CH2Cl2): nÄ 1841, 1959 cmÀ1 (CO); 8: 31P NMR (121.5 MHz, C6D6):
d 121.3 (t, 3J(P,H) 9 Hz); 1H NMR (300 MHz, C6D6): 2.12 (s, 6H),
2.27(s, 3H), 2.34 (s, 3H), 2.38 (s, 3H), 2.45 (s, 3H), 4.50 (d, 3J(P,H)
(%): 358(43) [M ], 357(100) [M À H]; IR (gas): nÄ 2120 cmÀ1 (P H).
À
Received: April 17, 2000 [Z14998]
3
9.0 Hz, 2H; OCH2), 5.83 (d, J(P,H) 0.7Hz, 1H; 5-H), 6.7± 7.0 (m,
[1] Inorganic Reactions and Methods, Vol. 1 (Eds.: J. J. Zuckerman),
VCH, Deerfield Beach, 1986.
[2] S. Pawlenko in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952 ± ,
9H; m-H and Ph); 13C{1H} NMR (75.4 MHz, C6D6): d 66.9 (d,
2J(PC) 25.6 Hz; OCH2); MS (16 eV, 1008C): m/z (%): 464(12) [M ],
357(14) [M À OCH2Ph].
Vol. 13/5, 1980, p. 272, 350.
À
[17] The formation of 6 rather than a conceivable product 2d[BH4] agrees
with the observed addition reactions of phosphenium ions to BH4À: M.
Bürklin, E. Hanecker, H. Nöth, W. Storch, Angew. Chem. 1985, 97,
980; Angew. Chem. Int. Ed. Engl. 1985, 24, 999; G. Jochem, A.
Schmidpeter, H. Nöth, Z. Naturforsch. B 1996, 51, 267.
[3] For recent reports on the hydridic character of P H bonds in
Â
hypervalent Lewis base adducts of phosphanes, see: a) F. Carre, C.
Chuit, R. J. P. Corriu, A. Mehdi, C. Reye, J. Organomet. Chem. 1997,
529, 59; b) J.-P. Bezombes, F. Carre, C. Chuit, R. J. P. Corriu, A.
Mehdi, C. Reye, J. Organomet. Chem. 1997, 535, 81.
Â
Â
Â
[18] Evidence for the activity of 3d as a hydride transfer reagent was also
obtained in further cases; thus, reaction of CH2Cl2 with 3d was found
to proceed within several hours at 208C with quantitative formation of
the chlorination product 1d.
[19] G. Elsner, Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952 ± , Vol.
13/E1, 1980, p. 122.
[4] a) A. Göller, H.Heydt, T. Clark, J. Org. Chem. 1996, 61, 5840; b) A.
Göller, T. Clark, J. Mol. Model 2000, 6, 133.
[5] D. Gudat, A. Haghverdi, M. Nieger, Chem. Eur. J. 2000, 6, 3414.
[6] R. B. King, P. M. Sundaram, J. Org. Chem. 1984, 49, 1784.
[7] E. Niecke, A. Nickloweit-Lüke, R. Rüger, Phosphorus Sulfur 1982, 12,
213.
[8] E. Niecke, W. Güth, Z. Naturforsch. B 1985, 40, 1049.
[9] Crystal structure determination of 3d: C20H24ClN2P, yellow crystals,
crystal size 0.05 Â 0.10 Â 0.30 mm; Mr 358.8; monoclinic, space
group P21/n (no. 14), a 8.4888(7), b 7.0438(7), c 30.940(3) ,
b 93.629(5)8, V 1846.3(3) 3, Z 4, m(MoKa) 0.297mm À1, T
123(2) K, F(000) 760. Of 7837 reflections which were collected on
a Nonius KappaCCD diffractometer using MoKa radiation up to
2qmax 508, 2857were independent and used in all further calcula-
Stereoselective Synthesis and Palladium-
Catalyzed Transformations of 2-Alkylidene-
5-vinyltetrahydrofurans**
tions. The structure was solved with direct methods (SHELXS-97[10a]
)
and refined anisotropically against F 2; the hydrogen atom at the
phosphorus center was refined free and the remaining ones using a
riding model (program: SHELXL-97[10b]). The final wR2(F2) was
0.136 and the conventional R value R(F) 0.065 for 227parameters.
Crystallographic data (excluding structure factors) for the structure
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no.
CCDC-142914. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax:
(44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
Peter Langer* and Edith Holtz
Domino and sequential reactions are of interest in modern
organic chemistry since they enable the rapid assembly of
complex products.[1] In the course of our studies on the
development of domino reactions of dianions and dianion
equivalents,[2] we have recently reported the first cyclizations
of dilithiated 1,3-dicarbonyl compounds with oxalic acid
dielectrophiles.[3] These reactions allow an efficient, regio-
and stereoselective synthesis of the pharmacologically rele-
vant substance class of g-alkylidenebutenolides. Although a
variety of simple condensation reactions of dianions with
monofunctional alkyl halides are known, only a few domino
dialkylation reactions of dianions with difunctional alkyl
[10] a) G. M. Sheldrick, SHELXS-97, Acta Crystallogr. Sect. A 1990, 46,
467; b) G. M. Sheldrick, SHELXL-97, Universität Göttingen, 1997.
[11] For a structurally characterized diaminophosphane with intermolec-
ular hydrogen bonds, see: M. M. Olmstead, P. P. Power, G. A. Sigel,
Inorg. Chem. 1988, 27, 2045.
[12] Average and standard deviation of the result of a query in the CCSD
À
database for P H distances in compounds HnY3ÀnP (Y substituent
bound through a p-block element) with a three-coordinate phospho-
rus center.
[13] M. K. Denk, S. Gupta, A. J. Lough, Eur. J. Inorg. Chem. 1999, 41.
[14] All computations were performed at the MP2/6-31 g(d,p(P-H))-
level with the Gaussian package of programs: Gaussian 98 (Rev. A.7),
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Strat-
mann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N.
Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B.Foresman, J. Cioslowski, J. V.
Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R. Gomperts, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
[*] Dr. P. Langer, E. Holtz
Institut für Organische Chemie
Georg-August-Universität Göttingen
Tammannstrasse 2, 37077 Göttingen (Germany)
Fax : (49)551-399475
[**] This work was supported by the Fonds der Chemischen Industrie
(Liebig scholarship and funds for P.L.) and by the Deutsche
Forschungsgemeinschaft. P.L. thanks Prof. Dr. A. de Meijere for his
support.
3086
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3917-3086 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 17