Table 4 Crystallographic data and refinement detailsa
Complex
[PtMe3I(1)]
[PtCl2(1)]
[W(CO)4(1)] (a)
[W(CO)4(1)] (b)
Formula
M
C23H37IPtSb2
879.02
C20H28Cl2PtSb2
777.91
C24H28O4Sb2W
807.81
C24H28O4Sb2W
807.81
Crystal system
Space group
Monoclinic
P21/n (no. 14)
12.2870(15)
12.7061(10)
16.623(2)
91.307(6)
2594.5(5)
4
8.64
0.034
29152
5928
Monoclinic
P21/c (no. 14)
14.243(5)
13.068(3)
12.380(4)
90.302(12)
2304.1(12)
4
8.62
0.148
25377
5290
Monoclinic
P21/n (no. 14)
12.9641(15)
23.323(3)
17.0599(15)
96.210(5)
5128.0(9)
8
6.59
0.048
58518
11741
Monoclinic
Cc (no. 9)
17.705(3)
11.6869(15)
12.4991(10)
94.506(10)
2578.2(5)
4
6.56
0.025
17199
5633
˚
a/A
˚
b/A
˚
c/A
b/◦
U/A
Z
3
˚
l(Mo-Ka)/mm−1
Rint
Total no. of obsns.
Unique obsns.
No. parameters
R1 [Io > 2r(Io)]
R1 (all data)
wR2 [Io > 2r(Io)]
wR2 (all data)
245
0.029
0.036
0.062
240
0.057
0.147
0.090
605
0.028
0.046
0.054
281
0.024
0.025
0.049
0.064
0.109
0.059
0.049
ꢀ
ꢀ
ꢀ
ꢀ
Details in common: T = 120 K; k(Mo-Ka) = 0.71073 A; hmax = 27.5◦. R1 = ꢀFo| − |Fcꢀ/ |Fo|; wR2 = [ w(Fo − Fc2)2/ wFo
]
a
2
4 1/2
˚
atom positions, with the sum of the occupancies of the two I and
two C components each being one. Distinct partial C atom and
partial I atoms could not be identified, hence these units were
refined with identical atomic coordinates and atom displacement
parameters. Consequently the Pt–I and Pt–C distances in the
trans-I–Pt–C unit are weighted averages, and should not be
used in comparative studies. The H atoms associated with the
disordered Me groups were not included in the final structure
factor calculation. The structure of [PtCl2(1)] shows some disorder
in the position of the PtCl2 fragment. This was evident from a
residual unassigned peak in the difference map which based upon
the thermal ellipsoids, coordination environment, the distances
and angles relative to the Sb2PtCl2 plane could not be assigned
to a light atom. The disorder model presented gave a very
satisfactory refinement for two alternative positions for the Pt
atom with relative occupancies of 91 and 9%. This leads to two
Sb2PtCl2 planes with different orientations, and examination of
the centrosymmetric dimer shows that the Cl atoms associated
with the minor Pt component and those on the symmetry related
Pt1a are common. The discussion and the geometric parameters
in Table 2 refer to the major component.
References
1 H. Werner, Angew. Chem., Int. Ed., 2004, 43, 938.
2 H. Werner, D. A. Ortmann and O. Gevert, Chem. Ber., 1996, 129, 411.
3 N. R. Champness and W. Levason, Coord. Chem. Rev., 1994, 133, 115;
W. Levason and G. Reid, Coord. Chem. Rev., 2006, 250, 2565.
4 W. Levason and G. Reid, in Comprehensive Coordination Chemistry II,
ed. J. A. McCleverty and T. J. Meyer, Elsevier, Amsterdam, 2004, vol.
1, p. 377.
5 W. Levason, M. L. Matthews, G. Reid and M. Webster, Dalton Trans.,
2004, 51.
6 W. Levason, M. L. Matthews, G. Reid and M. Webster, Dalton Trans.,
2004, 554.
7 H. A. Meinema, H. F. Martens and J. G. Noltes, J. Organomet. Chem.,
1976, 110, 183.
8 M. F. Lappert, T. R. Martin and C. L. Raston, Inorg. Synth., 1989, 26,
144.
9 M. F. Lappert, T. R. Martin, C. L. Raston, B. W. Skelton and A. H.
White, J. Chem. Soc., Dalton Trans., 1982, 1959.
10 T. Yamato, N. Sakaue, M. Komine and Y. Nagano, J. Chem. Res. (S),
1997, 246; T. Yamato, N. Sakaue, M. Komine and Y. Nagano, J. Chem.
Res. (M), 1997, 1708.
11 F. L. March, R. Mason, K. M. Thomas and B. L. Shaw, J. Chem. Soc.,
Chem. Commun., 1975, 584; A. J. Pryde, B. L. Shaw and B. Weeks,
J. Chem. Soc., Chem. Commun., 1973, 947; F. L. March, R. Mason,
K. M. Thomas and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1976,
322; W. E. Hill, D. M. A. Minehan, J. C. Taylor and C. A. McAuliffe,
J. Am. Chem. Soc., 1982, 104, 6001; B. L. Shaw, J. Organomet. Chem.,
1980, 200, 307.
Some disorder was also found in the backbone of one of the
two crystallographically independent [W(CO)4(1)] molecules in
the asymmetric unit of the first polymorph (P21/n; (a)). This
was modelled very satisfactorily using split C atom occupancies
in the disordered region, revealing two slightly different ligand
conformations. Selected bond lengths and angles for these species
are presented in Tables 1–3.
12 P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek and P. Dierkes,
Chem. Rev., 2000, 100, 2741, and references therein.
13 M. D. Brown, W. Levason, G. Reid and M. Webster, Dalton Trans.,
2006, 1667.
14 E. G. Hope, W. Levason and N. A. Powell, Inorg. Chim. Acta, 1986,
115, 187.
15 J. Iball, M. MacDougall and S. Scrimgeour, Acta Crystallogr., Sect. B,
1975, 31, 1672.
CCDC reference numbers 285687 and 616260–616262.
16 M. D. Brown, W. Levason, J. M. Manning and G. Reid, J. Organomet.
Chem., 2005, 690, 1540.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b610808c
17 A. M. Hill, N. J. Holmes, A. R. J. Genge, W. Levason, M. Webster and
S. Rutschow, J. Chem. Soc., Dalton Trans., 1998, 825.
18 J. C. Baldwin and W. C. Kaska, Inorg. Chem., 1975, 14, 2020.
19 D. J. Darensbourg and R. L. Kump, Inorg. Chem., 1978, 17, 2680.
20 G. M. Sheldrick, SHELXS-97, program for crystal structure solution,
University of Go¨ttingen, Germany, 1997.
Acknowledgements
We thank the EPSRC for support (M. D. B.) and Johnson Matthey
plc for loans of platinum metal salts. We also thank Ms Julie
Herniman for assistance with the mass spectrometry experiments.
21 G. M. Sheldrick, SHELXL-97, program for crystal structure refinement,
University of Go¨ttingen, Germany, 1997.
22 H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876.
5654 | Dalton Trans., 2006, 5648–5654
This journal is
The Royal Society of Chemistry 2006
©