C O M M U N I C A T I O N S
Scheme 3. Cyclopropanation of Cyclobutene 5a
naturally occurring material. In addition, the route allowed for
confirmation of the absolute stereochemistry of these systems.
In summary, a new strategy for generating 5-7 ring systems
has been employed in the first asymmetric total synthesis of
pleocarpenene (2) and pleocarpenone (1). An intramolecular
cycloaddition of cyclobutadiene followed by cyclopropanation and
thermal rearrangement (6 f 5 f 4 f 3) are highlighted as the
key steps in the synthesis.
Acknowledgment. We thank the National Institutes of Health
(GM62824) for financial support. We also thank Prof. M. Silva
(Universidad de Concepcio´n, Chile) for a sample of pleocarpenone.
We are grateful to Schering-Plough for X-ray facility support and
for a Graduate Student Fellowship (M.J.W.). We thank Dr. Steve
Schmidt (W.R. Grace) for helpful discussions and samples of Raney
Nickel.
a Data shown for one enantiomeric series. Reaction conditions: (a) (i)
LAH, THF, 0 °C to rt; (ii) TIPSCl, DMAP, Et3N, THF, 4 Å MS; Ac2O
(87-89%); (b) EDA, Cu(acac)2 (5 mol %), CH2Cl2, reflux; EtOH, rt; then
NaOEt(s) (93-95%); (c) (COCl)2, DMSO, THF, -62 °C; Et3N, rt; MeMgCl,
-78 °C (79-82%).
Supporting Information Available: Experimental procedures and
data on new compounds are provided (PDF). This material is available
Since we had shown that carbonyl functionality adjacent to this
strained ring system could lead to facile ring opening,3b a tandem
oxidation/alkylation strategy was employed using procedures by
Nubbemeyer and Ireland to generate compound 4 in 79-82% yield.9
We expected the thermal rearrangement of the highly function-
alized cycloadduct 4 to yield the desired bicyclo[5.3.0]decane 3
with inversion of the C1 stereochemistry.3a Unfortunately, initial
fragmentations led to significant levels of decomposition and low
yields of the desired 5-7 ring system. Apparently, the acid-sensitive
tertiary allylic alcohol (C4) in cycloheptadiene 3 was responsible
for the poor outcome since addition of DBU rectified the problem.10
As illustrated in Scheme 4, the optimized rearrangement provided
the desired product 3 with inversion at C1 in 76% yield.
References
Krishnan, S.; Blackwell, H. E.; Schreiber, S. L. J. Am. Chem. Soc. 2002,
124, 1354. For representative reviews on methods to access medium sized
rings, see: (c) Yet, L. Chem. ReV. 2000, 100, 2963. (d) Molander, G. A.
Acc. Chem. Res. 1998, 31, 603.
(2) (a) Limanto, J.; Tallarico, J. A.; Porter, J. R.; Khuong, K. S.; Houk, K.
N.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 14748. (b) Tallarico, J.
A.; Randall, M. L.; Snapper, M. L. J. Am. Chem. Soc. 1996, 118, 9196.
(c) Limanto, J.; Snapper, M. L. J. Am. Chem. Soc. 2000, 122, 8071. For
related transformations, see: (d) Limanto, J.; Khuong, K. S.; Houk, K.
N.; Snapper, M. L. J. Am. Chem. Soc. 2003, 125, 16310. (e) Limanto, J.;
Snapper, M. L. J. Org. Chem. 1998, 63, 6440. (f) Seigal, B. A.; An, M.
H.; Snapper, M. L. Angew. Chem., Int. Ed. 2005, 44, 4929.
(3) (a) Deak, H. L.; Stokes, S. S.; Snapper, M. L. J. Am. Chem. Soc. 2001,
123, 5152. (b) Deak, H. L.; Williams, M. J.; Snapper, M. L. Org. Lett.
2005, 7, 5785.
Scheme 4. Completion of the Total Synthesisa
(4) (a) Zdero, C.; Bohlmann, F. J. Nat. Prod. 1988, 51, 509. (b) De Pascual,
T. J.; Bellido, I. S.; Gonzalez, M. S. Tetrahedron 1980, 36, 371. (c) Silva,
M.; Wiesenfeld, A.; Sammes, P. G.; Tyler, T. W. Phytochemistry 1977,
16, 379. (d) Gopalakrishna, E. M.; Watson, W. H. Cryst. Struct. Commun.
1977, 6, 655. (e) Taria, Z.; Watson, W. H.; Silva, M.; Sammes, P. G.
Cryst. Struct. Commun. 1976, 5, 601.
(5) (a) Lazarova, T.; Chen, J. S.; Hamann, B.; Kang, J. M.; Homuth-Trombino,
D.; Han, F.; Hoffmann, E.; McClure, J. E.; Or, Y. S. J. Med. Chem. 2003,
46, 674. (b) Chatterjee, A. K.; Choi, T.; Sander, D. P.; Grubbs, R. H. J.
Am. Chem. Soc. 2003, 125, 11360. (c) Choi, T.; Lee, C. W.; Chatterjee,
A. K.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 10417. (d) Chatterjee,
A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000,
122, 3783. (e) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A.
H. J. Am. Chem. Soc. 2000, 122, 8168. (f) Kingsbury, J. S.; Harrity, J. P.
A.; Bonitatebus, P. J., Jr.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121,
791.
(6) (a) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Tetrahedron
1994, 50, 4363. (b) von dem Bussche-Hunnefeld, J. L.; Seebach, D.
Tetrahedron 1992, 48, 5719. (c) Seebach, D.; Behrendt, L.; Felix, D.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1008. (d) Pu, L.; Yu, H.-B. Chem.
ReV. 2001, 101, 757. (e) Soai, K.; Niwa, S. Chem. ReV. 1992, 92, 833.
(7) (a) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986. (b)
Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1996, 37, 4837. (c) Corey, E.
J.; Helal, C. J. Tetrahedron Lett. 1995, 36, 9153.
a Reaction conditions: (a) benzene, 200 °C, DBU (15 mol %) (76%);
(b) W.R. Grace 2800 RaNi, H2 (100 atm), acetone, 63%; (c) TBAF, THF,
99%; (d) TsCl, Et3N, DMAP, THF, CH2Cl2, 99%; (e) NaI, DBU, DMF, 80
°C, 83%; (f) O3, MeOH, -78 °C; DMS, rt; NaOMe (85%).
Completion of pleocarpenene’s synthesis required the reduction
of cycloheptadiene 3 to generate compound 15 with the noted
configuration at C5. While a variety of homogeneous hydrogena-
tions were not successful,11 heterogeneous methods did provide the
desired product.12 Optimal conditions were observed with Raney
Nickel 2800 as catalyst, stirred in acetone under H2 (100 atm) for
12 h to afford compound 15 in 63% yield.
(8) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides;
Wiley: New York, 1998.
(9) (a) Nubbemeyer, U. J. Org. Chem. 1996, 61, 3677. (b) Ireland, R. E.;
Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.
(10) (a) Barriault, L.; Deon, D. H. Org. Lett. 2001, 3, 1925. (b) Barriault, L.;
Denissova, I. Org. Lett. 2002, 4, 1371.
(11) (a) Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 26, 190. (b) Hoveyda,
A. H.; Evans, D. A.; Fu, G. C. Chem. ReV. 1993, 93, 1307.
With four stereogenic centers in place, dehydration of the
protected alcohol remained to complete the synthesis. Removal of
the TIPS group was accomplished with TBAF. Selective tosylation
of the primary alcohol and elimination of the intermediate alkyl
iodide afforded pleocarpenene 2 in 83% yield (99% ee, 70% yield
after recrystallization).13 Ozonolysis and epimerization of 2 yielded
pleocarpenone 1, which was spectroscopically identical to the
(12) (a) Nishimura, S. Handbook of Heterogenous Catalytic Hydrogenation
for Organic Synthesis; Wiley: New York, 2001. (b) Rylander, P. Catalytic
Hydrogenation in Organic Synthesis; Academic Press: New York, 1979.
(c) Freifelder, M. Practical Catalytic Hydrogenation: Techniques and
Applications; Wiley: New York, 1971.
(13) Wolff, S.; Huecas, M. E.; Agosta, W. C. J. Org. Chem. 1982, 47, 4358.
JA0674340
9
J. AM. CHEM. SOC. VOL. 129, NO. 3, 2007 487