bonds.7 This has mandated the development of indirect methods
to prepare these moieties, including the carbometalation of
alkynes followed by organometallic coupling (eq 1)8 and the
functionalization of existing alkene templates (eq 2).9
Single-Isomer Tetrasubstituted Olefins from
Regioselective and Stereospecific
Palladium-Catalyzed Coupling of
â-Chloro-r-iodo-r,â-unsaturated Esters
Alison B. Lemay, Katarina S. Vulic, and
William W. Ogilvie*
Department of Chemistry, UniVersity of Ottawa,
10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
ReceiVed January 23, 2006
Regioselectivity is often problematic in the first method, an
issue often overcome by the use of directing groups. The use
of alkene templates ameliorates the regiochemical difficulty;
however, the preparation of the olefin template often becomes
challenging. Many processes of both types give mixtures of
regio- and stereoisomers.6 There are few techniques that
construct acyclic tetrasubstituted olefins,6,10 and preparations of
alkenes bearing four distinct carbon substituents are rare.6,11
In this paper, we describe a mild and convenient method of
forming acyclic, single isomer tetrasubstituted alkenes bearing
four different carbon substituents. E-â-Chloro-R-iodo-R,â-un-
saturated esters are generated from 2-alkynyl esters by exposure
to Bu4NI in refluxing dichloroethane. This process occurs with
complete selectivity and sets the foundation for the remaining
steps in the method. Sequential organometallic coupling of the
â-chloro-R-iodo-R,â-unsaturated esters with a variety of partners
occurs with complete regioselectivity and stereospecificity,
The efficient regioselective and stereospecific synthesis of
tetrasubstituted olefins using a mild and convenient method
is disclosed. 2-Alkynyl esters are selectively converted to
E-â-chloro-R-iodo-R,â-unsaturated esters by exposure to Bu4-
NI in refluxing dichloroethane. These products are produced
cleanly, regio- and stereoselectively, and in high yields.
Single-isomer tetrasubstituted olefins bearing four different
carbon substituents are then synthesized by sequential
palladium-catalyzed coupling reactions. Selectivity results
from reactivity differences in the intermediate substrates.
Tetrasubstituted olefins are key structural elements of natural
products and pharmaceuticals such as Nileprost1 and Tamox-
ifen.2 These moieties also serve as substrates for asymmetric
transformations that generate contiguous, asymmetric, quater-
nary centers such as osmylations,3 epoxidations,4 and conjugate
additions.5 To ensure high stereocontrol in synthesis, and
enantioselectivity in the latter processes, it is imperative that
methods be available to prepare tetrasubstituted olefins with tight
control of regio- and stereochemistry.
The efficient regio- and stereoselective synthesis of tetrasub-
stituted olefins is particularly challenging.6 Steric encumbrance
about the olefin and frequent lack of directing substituents
contribute significantly to this problem. Classic double-bond-
forming methods such as the Wittig and Horner-Wadsworth-
Emmons reactions encounter serious issues of generality and
stereoselectivity when used to form tetrasubstituted double
(7) (a) Maryanoff, B. E.; Reitz, A. B. Chem. ReV. 1989, 89, 863. (b)
Healy, M. P.; Parsons, A. F.; Rawlinson, J. G. T. Org. Lett. 2005, 7, 1597.
(c) Boutagy, J.; Thomas, R. Chem. ReV. 1974, 74, 87.
(8) (a) Fallis, A. G.; Forgione, P. Tetrahedron 2001, 57, 5899. (b) Zhou,
C.; Larock, R. C. Org. Lett. 2005, 7, 259. (c) Zhang, X.; Larock, R. C.
Org. Lett. 2003, 5, 2993. (d) Zhou, C.; Emrich, D. E.; Larock, R. C. Org.
Lett. 2003, 5, 1579 and references therein. (e) Zhou, C.; Larock, R. C. J.
Org. Chem. 2005, 70, 3765 and references therein. (f) Thadani, A. N.;
Rawal, V. H. Org. Lett. 2002, 4, 4317. (g) Takahashi, T.; Xi, C.; Ura, Y.;
Nakajima, K. J. Am. Chem. Soc. 2000, 122, 3228. (h) Piers, E.; Skerlj, R.
T. J. Org. Chem. 1987, 52, 4421. (i) Piers, E.; Morton, H. E. J. Org. Chem.
1980, 45, 4263. (j) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997,
119, 9065. (k) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem.
Soc. 2003, 125, 6358. (l) Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem.
1990, 55, 2554 and references therein.
(9) Functionalization of existing alkene templates (selected examples):
(a) Itami, K.; Mineno, M.; Muraoka, N.; Yoshida, J. J. Am. Chem. Soc.
2004, 126, 11778. (b) Shimizu, M.; Nakamaki, C.; Shimono, K.; Schelper,
M.; Kurahashi, T.; Hiyama, T. J. Am. Chem. Soc. 2005, 127, 12506. (c)
Rathore, R.; Deselnicu, M. I.; Burns, C. L. J. Am. Chem. Soc. 2002, 124,
14832. (d) Bellina, F.; Anselmi, C.; Martina, F.; Rossi, R. Eur. J. Org.
Chem. 2003, 2290. (e) Bauer, A.; Miller, M. W.; Vice, S. F.; McCombie,
S. W. Synlett 2001, 2, 254. (f) Shao, L.-X.; Shi, M. J. Org. Chem. 2005,
70, 8635. (g) Angell, R.; Parsons, P. J.; Naylor, A. Synlett 1993, 189.
(10) Selected preparations of tetrasubstituted olefins using identical
vicinal olefinic halogens: (a) Rossi, R.; Bellina, F.; Carpita, A.; Mazzarella,
F. Tetrahedron 1996, 52, 4095. (b) Boldi, A. M.; Anthony, J.; Knobler, C.
B.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1992, 31, 1240. (c) Fitzgerald,
J.; Taylor, W.; Owen, H. Synthesis 1991, 686. (d) He´naff, N.; Whiting, A.
J. Chem. Soc., Perkin Trans. 1 2000, 395.
(1) Takahashi, A.; Kirio, Y.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J.
Am. Chem. Soc. 1989, 111, 643.
(2) (a) Mohammed, A.-H. Synthesis 1987, 816. (b) Itami, K.; Kamei,
T.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 14670. (c) Tessier, P. E.;
Penwell, A. J.; Souza, F. E. S.; Fallis, A. G. Org. Lett. 2003, 5, 2989.
(3) (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.Chem. ReV.
1994, 94, 2483. (b) Dobler, C.; Mehltretter, G. M.; Sundermeier, U.; Beller,
M. J. Am. Chem. Soc. 2000, 122, 10289.
(4) Katsuki, T.; Martin, V. Org. React. 1996, 48, 1.
(5) (a) Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-
VCH: Weinheim, Germany, 2002; p 224. (b) Hayashi, T.; Yamasaki, K.
Chem. ReV. 2003, 103, 2829.
(6) Selected methods: (a) Yang, F.-Y.; Shanmugasundaram, M.; Chuang,
S.-Y.; Ku, P.-J.; Wu, M. Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125,
12576. (b) Shimizu, M.; Nakamaki, C.; Shimono, K.; Schelper, M.;
Kurahashi, T.; Hiyama, T. J. Am. Chem. Soc. 2005, 127, 12506. (c) Zhu,
N.; Hall, D. G. J. Org. Chem. 2003, 68, 6066. (d) Pospisil, J.; Pospisil, T.;
Marko, I. E. Org. Lett. 2005, 7, 2373. (e) Gerard, J.; Hevesi, L. Tetrahedron
2004, 60, 367.
(11) Selected preparations of alkenes bearing four different carbon
substituents: (a) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini,
P. Tetrahedron 1998, 54, 135. (b) Myers, A. G.; Alauddin, M. M.; Fuhry,
M. A. M.; Dragovich, P. S.; Finney, N. S.; Harringlton, P. M. Tetrahedron
Lett. 1989, 30, 6997.
10.1021/jo060144h CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/28/2006
J. Org. Chem. 2006, 71, 3615-3618
3615