Communications
[9] a) J. D. White, M. Kawasaki, J. Org. Chem. 1992, 57, 5292 – 5300;
b) J. D. White, M. Kawasaki, J. Am. Chem. Soc. 1990, 112, 4991–
4993.
concurrent cleavage of the N-PMB group and the methyl
glycoside with CAN. Although this final deprotection was
previously described as low-yielding,[8] we were pleased to
find that it provided 1 (Table 1) in satisfactory yield (78%)
simply upon prolongation of the reaction time.
In summary, a concise, productive, and inherently flexible
route to latrunculin B (1) has been outlined based on Fe-
catalyzed cross-coupling reactions[10–12] and alkyne metathe-
sis[16,18] as the key steps. The longest linear sequence
comprises 16 steps, which were performed in 14 operations,
and provides an overall yield of approximately 6%. An
extension of this approach to the synthesis of a focused library
of latrunculin analogues is underway and will be reported in
due course.
[10] a) A. Fürstner, A. Leitner, M. MØndez, H. Krause, J. Am. Chem.
Soc. 2002, 124, 13856 – 13863; b) A. Fürstner, A. Leitner,
Angew. Chem. 2002, 114, 632 – 635; Angew. Chem. Int. Ed.
2002, 41, 609 – 612; c) A. Fürstner, A. Leitner, Angew. Chem.
2003, 115, 320 – 323; Angew. Chem. Int. Ed. 2003, 42, 308 – 311.
[11] For Fe-catalyzed reactions of alkenyl halides, see: a) M. Tamura,
J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1487 – 1489; b) S. M.
Neumann, J. K. Kochi, J. Org. Chem. 1975, 40, 599 – 606; c) G.
Cahiez, H. Avedissian, Synthesis 1998, 1199 – 1205; d) G. A.
Molander, B. J. Rahn, D. C. Shubert, S. E. Bonde, Tetrahedron
Lett. 1983, 24, 5449 – 5452; e) A. Fürstner, H. Brunner, Tetrahe-
dron Lett. 1996, 37, 7009 – 7012; f) B. Hölzer, R. W. Hoffmann,
Chem. Commun. 2003, 732 – 733.
[12] For iron-catalyzed syntheses of simple ketones, see: a) V.
Fiandanese, G. Marchese, V. Martina, L. Ronzini, Tetrahedron
Lett. 1984, 25, 4805 – 4808; b) C. Cardellicchio, V. Fiandanese, G.
Marchese, L. Ronzini, Tetrahedron Lett. 1987, 28, 2053 – 2056.
[13] A. G. M. Barrett, R. A. E. Carr, S. V. Attwood, G. Richardson,
N. D. A. Walshe, J. Org. Chem. 1986, 51, 4840 – 4856.
Received: July 18, 2003 [Z52413]
Keywords: alkynes · cross-coupling · macrocycles · metathesis ·
.
natural products
[14] U. S. Racherla, Y. Liao, H. C. Brown, J. Org. Chem. 1992, 57,
6614 – 6614.
[15] D. A. Evans, J. S. Clark, R. Metternich, V. J. Novack, G. S.
Sheppard, J. Am. Chem. Soc. 1990, 112, 866 – 868.
[16] a) A. Fürstner, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc.
1999, 121, 9453 – 9454; b) A. Fürstner, C. Mathes, C. W. Leh-
mann, Chem. Eur. J. 2001, 7, 5299 – 5317.
[1] a) J. R. Peterson, T. J. Mitchison, Chem. Biol. 2002, 9, 1275 –
1285; b) K.-S. Yeung, I. Paterson, Angew. Chem. 2002, 114,
4826 – 4847; Angew. Chem. Int. Ed. 2002, 41, 4632 – 4653.
[2] For leading references, see: a) I. Spector, N. R. Shochet, Y.
Kashman, A. Groweiss, Science 1983, 219, 493 – 495; b) I.
Spector, N. R. Shochet, D. Blasberger, Y. Kashman, Cell Motil.
Cytoskeleton 1989, 13, 127 – 144; c) Molecular Motors and the
Cytoskeleton, Part B: K. Ayscough, Methods Enzymol. 1998,
298, 18 – 25; d) K. R. Ayscough, J. Stryker, N. Pokala, M.
Sanders, P. Crews, D. G. Drubin, J. Cell Biol. 1997, 137, 399 – 416.
[3] See i.a.: a) W. M. Morton, K. R. Ayscough, P. J. McLaughlin,
Nat. Cell Biol. 2000, 2, 376 – 378; b) E. G. Yarmola, T. Soma-
sundaram, T. A. Boring, I. Spector, M. R. Bubb, J. Biol. Chem.
2000, 275, 28120 – 28127.
[17] This must be seen in light of the fact that steric hindrance close to
a double bond can be a significant obstacle in conventional
alkene metathesis; the same pertains to sulfur-containing com-
pounds, which are usually highly problematic in alkene meta-
thesis. For a Review, see: A. Fürstner, Angew. Chem. 2000, 112,
3140 – 3172; Angew. Chem. Int. Ed. 2000, 39, 3012 – 3043; see
also: S. J. Connon, S. Blechert, Angew. Chem. 2003, 115, 1944 –
1968; Angew. Chem. Int. Ed. 2003, 42, 1900 – 1923.
[18] For previous applications of RCAM to total synthesis, see
reference [16b] and the following: a) A. Fürstner, K. Grela, C.
Mathes, C. W. Lehmann, J. Am. Chem. Soc. 2000, 122, 11799 –
11805; b) A. Fürstner, K. Radkowski, J. Grabowski, C. Wirtz, R.
Mynott, J. Org. Chem. 2000, 65, 8758 – 8762; c) A. Fürstner, F.
Stelzer, A. Rumbo, H. Krause, Chem. Eur. J. 2002, 8, 1856 – 1871;
d) A. Fürstner, A.-S. Castanet, K. Radkowski, C. W. Lehmann, J.
Org. Chem. 2003, 68, 1521 – 1528.
[4] a) I. Neeman, L. Fishelson, Y. Kashman, Mar. Biol. 1975, 30,
293 – 296; b) Y. Kashman, A. Groweiss, U. Shmueli, Tetrahedron
Lett. 1980, 21, 3629 – 3632; c) A. Groweiss, U. Shmueli, Y.
Kashman, J. Org. Chem. 1983, 48, 3512 – 3516.
[5] a) R. K. Okuda, P. J. Scheuer, Experientia 1985, 41, 1355 – 1356;
b) Y. Kakou, P. Crews, G. J. Bakus, J. Nat. Prod. 1987, 50, 482 –
484; c) C. W. Jefford, G. Bernardinelli, J. Tanaka, T. Higa,
Tetrahedron Lett. 1996, 37, 159 – 162; d) N. K. Gulavita, S. P.
Gunasekera, S. A. Pomponi, J. Nat. Prod. 1992, 55, 506 – 508;
e) J. Tanaka, T. Higa, G. Bernardinelli, C. W. Jefford, Chem. Lett.
1996, 255 – 256; f) D. Mebs, J. Chem. Ecol. 1985, 11, 713 – 716;
g) T. R. Hoye, S.-E. N. Ayyad, B. M. Eklov, N. E. Hashish, W. T.
Shier, K. A. El Sayed, M. T. Hamann, J. Am. Chem. Soc. 2002,
124, 7405 – 7410.
[6] This knowledge is entirely based on derivatizations of the
natural product; see: a) D. Blasberger, S. Carmely, M. Cojocaru,
I. Spector, N. R. Shochet, Y. Kashman, Liebigs Ann. Chem. 1989,
1171 – 1188; b) I. Spector, N. R. Shochet, D. Blasberger, Y.
Kashman, J. Cell Biol. 1986, 103, 1467.
[7] a) A. Fürstner, G. Seidel, Angew. Chem. 1998, 110, 1758 – 1760;
Angew. Chem. Int. Ed. 1998, 37, 1734 – 1736; b) A. Fürstner, O.
Guth, A. Rumbo, G. Seidel, J. Am. Chem. Soc. 1999, 121, 11108 –
11113.
[8] a) A. B. Smith, J. W. Leahy, I. Noda, S. W. Remiszewski, N. J.
Liverton, R. Zibuck, J. Am. Chem. Soc. 1992, 114, 2995 – 3007;
b) A. B. Smith, I. Noda, S. W. Remiszewski, N. J. Liverton, R.
Zibuck, J. Org. Chem. 1990, 55, 3977 – 3979; c) R. Zibuck, N. J.
Liverton, A. B. Smith, J. Am. Chem. Soc. 1986, 108, 2451– 2453.
5360
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 5358 –5360