Synthesis of (()-Calicheamicinone by Two Methods
J. Am. Chem. Soc., Vol. 120, No. 40, 1998 10333
Scheme 1
the resulting biradical 5 abstracts hydrogen6a,e,10e-g from both
strands of the DNA sugar backbone, leading to DNA cleavage.
Each of these steps has been scrutinized carefully, and a detailed
picture has emerged. Many of the mechanistic features are
shared by other enediyne antitumor agents, and the mode of
activation (though not the sequence selectivity13 or propensity
to cause double strand cleavage14) of the closely related
esperamicins15 is likely to be similar.
I
As a synthetic target, calicheamicin γ1 represents an espe-
cially large number of complex problems that are inherent not
only in the construction of the sensitive enediyne segment and
the unusual tetrasaccharide but also in the linking of both of
these substructures, or portions of them, in a way that preserves
their integrity during the remaining steps of the synthesis. We
have dealt with the first of these taskssthe synthesis of the
aglycon.
During the course of our work, two syntheses2 of calicheami-
cinone, and of calicheamicin γ1 itself,16 were completed by the
I
research teams led by Danishefsky and by Nicolaou, but the
routes to the enediyne section in each of these remarkable
syntheses were so very different from the one we were exploring
that it was appropriate to continue our studies.
of DNA9 followed by activation of the enediyne portion so as
to afford a highly reactive biradical. This, in turn, initiates
cleavage of both DNA strands. The recognition process6a,e,10
s
certain sequences are preferentially cleavedsis effected
largely10a-d by the aryl carbohydrate segment. Activation
(Scheme 1) involves cleavage of the trisulfide (2 f 3) followed
by intramolecular Michael addition (3 f 4).11 Once that
addition has taken place and C(3) (nonsystematic numbering)
becomes sp3 hybridized, Bergman cyclization11,12 occurs, and
Results and Discussion
Development of the Synthetic Plan. Although no synthesis
of calicheamicinone had been reported when we began,17
a
number of papers had appeared that dealt with the most
conspicuous features of the molecule: the allylic trisulfide and
the cyclic enediyne. Published model studies18 on the enediyne
emphasized the difficulties in constructing such a unit and
prompted us to take appropriate precautions in the form of
unusually extensive backup plans.
The properties of allylic trisulfides19 had received little
attention, but we were greatly helped by the pioneering studies
of Magnus and his collaborators on the synthesis and thermal
(7) (a) Against murine tumors the optimum dose is 0.5-1.5 mg/kg
Thomas, J. P.; Carvagal, S. G.; Lindsay, H. L.; Citarella, R. V.; Wallace,
R. E.; Lee, M. D.; Durr, F. E. Program and Abstracts, 26th Interscience
Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA,
Sept 1986; American Society for Microbiology: Washington, DC.; 1986;
Abstr. 229 (quoted in Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C.
C.; Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464). (b)
Measurement of cytotoxic activity against numerous cancer cell lines gave
IC50 values in the nanomolar range: Nicolaou, K. C.; Li, T.; Nakada, M.;
Hummel, C. W.; Hiatt, A.; Wrasidlo, W. Angew. Chem., Int. Ed. Engl. 1994,
33, 183.
(12) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. See the Supporting
Information for additional references.
(8) For measurements of its antimicrobial activity, see ref 4b.
(13) (a) Sugiura, Y.; Takahashi, Y.; Uesawa, Y.; Kuwahara, J. Nucleic
Acids Symp. Ser. 1988, 20, 63. (b) Long, B. H.; Golik, J.; Forenza, S.;
Ward, B.; Rehfuss, R.; Dabrowaik, J. C.; Catino, J. J.; Musial, S. T.;
Brookshire, K. W.; Doyle, T. W. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 2.
(c) Sugiura, Y.; Uesawa, Y.; Takahashi, Y.; Kuwahara, J.; Golik, J.; Doyle,
T. W. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7672. (d) Christner, D. F.;
Frank, B. L.; Kozarich, J. W.; Stubbe, J.; Golik, J.; Doyle, T. W.; Rosenberg,
I. E.; Krishnan, B. J. Am. Chem. Soc. 1992, 114, 8763. (e) Esperamicin-
DNA NMR studies: Ikemoto, N.; Kumar, R. A.; Dedon, P. C.; Danishefsky,
S. J.; Patel, D. J. J. Am. Chem. Soc. 1994, 116, 9387. (f) Langley, D. R.;
Golik, J.; Krishnan, B.; Doyle, T. W.; Beveridge, D. L. J. Am. Chem. Soc.
1994, 116, 15.
(14) Esperamicin A1 causes single strand cleavage (see ref 13b-d).
(15) Golik, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.;
Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc.
1987, 109, 3462.
(16) (a) Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama, K.;
Pitsinos, E. N.; Saimoto, H.; Mizuno, Y.; Baldenius, K.-U.; Smith, A. L. J.
Am. Chem. Soc. 1993, 115, 7625. (b) Hitchcock, S. A.; Chu-Moyer, M. Y.;
Boyer, S. H.; Olson, S. H.; Danishefsky, S. J. J. Am. Chem. Soc. 1995,
117, 5750.
(17) Taken in part from the Ph.D. Thesis (April 1991) of S.D.
(18) Reviews: (a) Lhermitte, H.; Grierson, D. S. Contemp. Org. Synth.
1996, 3, 41. (b) Review: Lhermitte, H.; Grierson, D. S. Contemp. Org.
Synth. 1996, 3, 93. See the Supporting Information for additional references.
(19) Reviews on polysulfides: (a) Harpp, D. N. PerspectiVes in the
Organic Chemistry of Sulfur; Zwanenburg, B., Klunder, A. J. H., Eds.;
Studies in Organic Chemistry 28; Elsevier: Amsterdam, 1987. (b) Kutney,
G. W.; Turnbull, K. Chem. ReV. 1982, 82, 333. Diallyl trisulfide: (c) Ariga,
T.; Oshiba, S.; Tamada, T. Lancet 1981, 1, 150. Synthetic methods for
trisulfides: (d) Harpp, D. N.; Ash, D. K. Int. J. Sulfur Chem. Part A 1971,
1, 57. (e) Cf. Sullivan, A. B.; Boustany, K. Int. J. Sulfur Chem. Part A
1971, 1, 207. (f) Cf. Harpp, D. N.; Ash, D. K. Int. J. Sulfur Chem. Part A
1971, 1, 211. (g) Mott, A. W.; Barany, G. Synthesis 1984, 657. (h) Derbesy,
G.; Harpp, D. N. Tetrahedron Lett. 1994, 35, 5381.
(9) NMR studies of the binding: (a) Walker, S.; Murnick, J.; Kahne, D.
J. Am. Chem. Soc. 1993, 115, 7954. (b) Walker, S. L.; Andreotti, A. H.;
Kahne, D. E. Tetrahedron 1994, 50, 1351. (c) Cf. Paloma, L. G.; Smith, J.
A.; Chazin, W. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1994, 116, 3697. (d)
Zein, N.; McGahren, W. J.; Morton, G. O.; Ashcroft, J.; Ellestad, G. A. J.
Am. Chem. Soc. 1989, 111, 6888.
(10) (a) Drak, J.; Iwasawa, N.; Danishefsky, S.; Crothers, D. M. Proc.
Natl. Acad. Sci. U.S.A. 1991, 88, 7464. (b) Nicolaou, K. C.; Tsay, S.-C.;
Suzuki, T.; Joyce, G. F. J. Am. Chem. Soc. 1992, 114, 7555. (c) Li, T.;
Zeng, Z.; Estevez, V. A.; Baldenius, K. U.; Nicolaou, K. C.; Joyce, G. F.
J. Am. Chem. Soc. 1994, 116, 3709. (d) Ikemoto, N.; Kumar, R. A.; Ling,
T.-T.; Ellestad, G. A.; Danishefsky, S. J.; Patel, D. J. Proc. Natl. Acad.
Sci. U.S.A. 1995, 92, 10506. (e) Zein, N.; Sinha, A. M.; McGahren, W. J.;
Ellestad, G. A. Science 1988, 240, 1198. (f) Cf. De Voss, J. J.; Townsend,
C. A.; Ding, W.-D.; Morton, G. O.; Ellestad, G. A.; Zein, N.; Tabor, A. B.;
Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 9669. (g) Hangeland, J. J.;
De Voss, J. J.; Heath, J. A.; Townsend, C. A.; Ding, W.-d.; Ashcroft, J. S.;
Ellestad, G. A. J. Am. Chem. Soc. 1992, 114, 9200. See Supporting
Information for additional references.
(11) (a) Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegel,
M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem.
Soc. 1987, 109, 3466. (b) For studies of the Bergman mechanism in model
compounds, see: Magnus, P.; Carter, P. A. J. Am. Chem. Soc. 1988, 110,
1626. (c) Stability of model enediynes: Nicolaou, K. C.; Zuccarello, G.;
Ogawa, Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110,
4866. (d) Magnus, P.; Lewis, R. T.; Huffman, J. C. J. Am. Chem. Soc.
1988, 110, 6921. (e) In vitro NMR studies of the activation mechanism:
De Voss, J. J.; Hangeland, J. J.; Townsend, C. A. J. Am. Chem. Soc. 1990,
112, 4554. (f) Chatterjee, M.; Cramer, K. D.; Townsend, C. A. J. Am. Chem.
Soc. 1993, 115, 3374. (g) Cf. Myers, A. G.; Cohen, S. B.; Kwon, B. M. J.
Am. Chem. Soc. 1994, 116, 1255. (h) Chatterjee, M.; Smith, P. J.; Townsend,
C. A. J. Am. Chem. Soc. 1996, 118, 1938. (i) Theoretical treatment of
trisulfide cleavage: Mulhearn, D. C.; Bachrach, S. M. J. Am. Chem. Soc.
1996, 118, 9415.