Published on Web 08/10/2006
Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl
Triflates
Sze-Sze Ng, Chun-Yu Ho, and Timothy F. Jamison*
Contribution from the Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Received April 25, 2006; E-mail: tfj@mit.edu
Abstract: A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes,
and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives
selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct
from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis
are discussed.
Introduction
the preparation of alcohol and amine derivatives. Nickel,
palladium, rhodium, and ruthenium catalysts have been found
Alkenes are one of the most versatile, utilized, and readily
available classes of functional groups. Simple alpha olefins are
produced in megaton scale each year industrially, highlighting
the importance of these organic feedstocks.1 Several indispen-
sable transformations utilize olefins, such as Ziegler-Natta
polymerization,2 the Heck reaction,3a-e Wacker oxidation,3a
hydroformylation,3a hydrometalation,3a alkene cross-metathesis,4
epoxidation,5 and dihydroxylation.5
The nickel-catalyzed coupling of alkenes, aldehydes, and silyl
triflates that we recently developed is the first example of a
transition metal-catalyzed coupling of simple, unactivated olefins
and aldehydes that provides allylic alcohol derivatives.6 With
careful choice of the supporting ligand on nickel, this coupling
reaction can also selectively provide homoallylic alcohol
derivatives that are generally not accessible using Lewis acid-
catalyzed carbonyl-ene reactions (eq 1).7
to be particularly effective in the intermolecular coupling of
alkynes, 1,3-enynes, 1,3-dienes, allenes, enoate esters, enones,
and enals with aldehydes, ketones, epoxides, glyoxylate esters,
and imines.8-11 A variety of reducing agents have been used in
these reductive couplings, such as triethylborane, organozinc
(4) Handbook of Metathesis; Grubbs, R. H., Ed.; John Wiley & Sons: New
York, 2003.
(5) Catalytic Asymmetric Synthesis; Ojima, I., Ed; Wiley-VCH: New York,
2000.
(6) Preliminary communications of this work: (a) Ng, S.-S.; Jamison, T. F. J.
Am. Chem. Soc. 2005, 127, 14194-14195. (b) Ho, C.-Y.; Ng, S.-S.;
Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 5362-5363.
(7) Carbonyl-ene reaction was first reported by Alder in 1943. (a) Alder, K.;
Pascher, F.; Schmitz, A. Ber. Dtsch. Chem. Ges. 1943, 76, 27. For a review
of the carbonyl-ene reaction, see: (b) Hoffmann, H. M. R. Angew. Chem.,
Int. Ed. Engl. 1969, 8, 556-577. (c) Snider, B. B. Acc. Chem. Res. 1980,
13, 426-432. (d) Snider, B. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, pp 527-
561. (e) Mikami, K.; Shimizu, M. Chem. ReV. 1992, 92, 1021-1050. (f)
Dias, L. C. Curr. Org. Chem. 2000, 4, 305-342.
(8) For a review of the nickel-catalyzed reductive coupling reactions see: (a)
Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890-3908. (b) A general
reference of organonickel chemistry: Modern Organonickel Chemistry;
Tamaru, Y., Ed.; Wiley-VCH: Weinheim, Germany, 2005. Recent reports
of nickel-catalyzed reductive couplings: Alkynes: (c) Patel, S. J.; Jamison,
T. F. Angew. Chem., Int. Ed. 2004, 43, 3941-3944. (d) Kimura, M.; Ezoe,
A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 201-209. (e)
Knapp-Reed, B.; Mahandru, G. M.; Montgomery, J. J. Am. Chem. Soc.
2005, 127, 13156-13157. (f) Luanphaisarnnont, T.; Ndubaku, C. O.;
Jamison, T. F. Org. Lett. 2005, 7, 2937-2940. Enyne: (g) Miller, K. M.;
Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 15342-15343. (h) Miller, K.
M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc.
2004, 126, 4130-4131. (i) Miller, K. M.; Colby, E. A.; Woodin, K. S.;
Jamison, T. F. AdV. Synth. Catal. 2005, 347, 1533-1536. (j) Miller, K.
M.; Jamison, T. F. Org. Lett. 2005, 7, 3077-3080. (k) Moslin, R. M.;
Jamison, T. F. Org. Lett. 2006, 8, 455-458. Allene: (l) Takimoto, M.;
Kawamura, M.; Mori, M.; Sato, Y. Synlett 2005, 13, 2019-2022. (m) Ng,
S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320-7321. (n) Ng,
S.-S.; Jamison, T. F. Tetrahedron 2005, 61, 11405-11417. (o) Song, M.;
Montgomery, J. Tetrahedron 2005, 61, 11440-11448. Diene: (p) Takimoto,
M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126,
5956-5957. (q) Sawaki, R.; Sato, Y.; Mori, M. Org. Lett. 2004, 6, 1131-
1133. (r) Takimoto, M.; Kajima, Y.; Sato, Y.; Mori, M. J. Org. Chem.
2005, 70, 8605-8606.
Transition metal-catalyzed intermolecular reductive and alkyl-
ative coupling reactions have emerged as useful methods for
(1) Alpha Olefins Applications Handbook; Lappin, G. R., Sauer, J. D., Eds.;
Marcel Dekker: New York, 1989.
(2) Organometallic Catalysts and Olefin Polymerization; Blom, R., Ed.;
Springer: New York, 2001.
(3) (a) Tsuji, J. Palladium Reagents and Catalysts: InnoVations in Organic
Synthesis; John Wiley & Sons: New York, 1995. (b) Review of the related
Heck reaction and palladium-hydride chemistry: Negishi, E.-i. Handbook
of Organopalladium Chemistry for Organic Synthesis; Wiley-Inter-
science: New York, 2002. (c) Beletskaya, I. P.; Cheprakov, A. V. Chem.
ReV. 2000, 100, 3009-3066. Detection of a palladium-hydride species in
the Heck reaction: (d) Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2004, 126,
13178-13179. Similar selectivity of the exo hydrogens over the endo
hydrogens has been reported in the Heck reaction literature: (e) Ono, K.;
Fugami, K.; Tanaka, S.; Tamaru, Y. Tetrahedron Lett. 1994, 35, 4133-
4136.
(9) Examples of palladium-catalyzed coupling reactions: (a) Anwar, U.; Grigg,
R.; Rasparini, M.; Savic, V.; Sridharan, V. Chem. Commun. 2000, 645-
646. (b) Ha, Y.-H.; Kang, S.-K. Org. Lett. 2002, 4, 1143-1146. (c) Kang,
S.-K.; Lee, S.-W.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67, 4376-4379.
(d) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221-2224. (e)
Hopkins, C. D.; Guan, L.; Malinakova, H. C. J. Org. Chem. 2005, 70,
6848-6862.
9
10.1021/ja062866w CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 11513-11528
11513