Published on Web 01/10/2007
Stereospecific Cross-Coupling of
r-(Thiocarbamoyl)organostannanes with Alkenyl, Aryl, and
Heteroaryl Iodides
J. R. Falck,* Paresh K. Patel, and Anish Bandyopadhyay
Contribution from the Departments of Biochemistry and Pharmacology, UniVersity of Texas
Southwestern Medical Center, Dallas, Texas 75390
Received July 12, 2006; E-mail: j.falck@utsouthwestern.edu
Abstract: Racemic and scalemic PTC-protected R-hydroxystannanes cross-couple with alkenyl/aryl/
heteroaryl iodides in moderate to good yields using copper(I) thiophene-2-carboxylate (CuTC) in THF at or
below room temperature. Simple aryl iodides and 1-iodocyclohexene, two classes of electrophiles that
typically react sluggishly, are also good substrates. Cross-couplings proceed with retention of configuration
at the alkenyl- and stannyl-substituted stereocenters.
successes, alkenyl9 and aryl10 electrophiles were refractory and
little, if any, cross-coupled adduct could be isolated. Conse-
Introduction
Cross-couplings of organostannanes mediated by transition
metals have emerged over the past quarter century as one of
the premier procedures for the creation of carbon-carbon bonds,
especially with sp and sp2-hybridized electrophiles.1 Their
numerous advantages, inter alia, applicability to a wide variety
of substrates, high stereospecificity, mild and neutral reaction
conditions, and compatibility with most functional groups, make
them especially suitable for the preparation of complex and/or
labile molecules.2 In the early 1990s, our laboratory3 and others4
explored the utility of organostannanes for the transfer of
stereogenic carbons bearing heteroatoms and described the
palladium-mediated cross-coupling of scalemic R-alkoxy- and
R-acyloxyalkylstannanes with acid chlorides.5 We subsequently
extended this to allylic and propargylic electrophiles and to
R-nitrogen-substituted alkylstannanes.6 The utility of this meth-
odology for the construction of chiral ethers and alcohols was
cogently demonstrated during asymmetric total syntheses of the
anticancer agent (+)-goniofufurone7 and the potent endothelium-
derived vasodilator 11,12,15-THETA.8 In stark contrast to these
quently, we initiated a systematic investigation of this variant
of the Stille reaction (eq 1) and report herein our progress.
Results and Discussion
The initial objective, i.e., the identification of a catalyst or
promoter11 competent to cross-couple R-hydroxystannanes with
alkenyl and aryl electrophiles at room temperature, was
conducted using pyrrolidinylthiocarbamoyl (PTC)-protected
stannane 3 and E-alkenyl iodide 4 as the test system. Evaluation
of a wide variety of transition metal salts and complexes, either
individually or in combination, revealed copper salts12,13 were
uniquely suitable and, in particular, commercial copper(I)
(1) Review: Mitchell, T. N. In Metal-Catalyzed Cross-Coupling Reactions,
2nd ed.; de Meijere, A.; Diederich, F., Eds.; Wiley-VCH Verlag GmbH &
Co.: Weinheim, 2004; Vol. 1, Chapter 3.
(9) Recent examples of alternative chiral allylic alcohol syntheses: (a)
Berkessel, A.; Roland, K.; Neudoerfl, J. M. Org. Lett. 2006, 8, 4195-
4198. (b) Evans, D. A.; Aye, Y. J. Am. Chem. Soc. 2006, 128, 11034-
11035. (c) Hilt, G.; Hess, W.; Harms, K. Org. Lett. 2006, 8, 3287-3290.
(10) Recent examples of alternative chiral benzylic alcohol syntheses: (a) Yang,
S.-D.; Shi, Y.; Sun, Z.-H.; Zhao, Y.-B.; Liang, Y.-M. Tetrahedron:
Asymmetry 2006, 17, 1895-1900. (b) Zhu, D.; Yang, Y.; Hua, L. J. Org.
Chem. 2006, 71, 4202-4205. (c) Grasa, G. A.; Zanotti-Gerosa, A.; Hems,
W. P. J. Organomet. Chem. 2006, 691, 2332-2334.
(11) Since CuTC is used in stoichiometric amounts and apparently consumed
to some extent, a reviewer suggested the term promoter instead of catalyst.
(12) Catalysis or promotion of the Stille reaction by copper salts in combination
with other transition metals or alone is well established: (a) Liebeskind,
L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359-5364. (b) Wipf, P.
Synthesis 1993, 537-557. (c) Piers, E.; McEachern, E. J.; Burns, P. A. J.
Org. Chem. 1995, 60, 2322-2323. (d) Wang, Y.; Burton, D. Org. Lett.
2006, 8, 1109-1111.
(13) Transmetalation of organostannanes with higher order cuprates is also
known: Behling, J. R.; Babiak, K. A.; Ng, J. S.; Campbell, A. L.; Moretti,
R.; Koerner, M.; Lipshutz, B. H. J. Am. Chem. Soc. 1988, 110, 2641-
2643.
(2) Recent applications in natural products total synthesis: (a) Nicolaou, K.
C.; Koftis, T. V.; Vyskocil, S.; Petrovic, G.; Tang, W.; Frederick, M. O.;
Chen, D. Y.-K.; Li, Y.; Ling, T.; Yamada, Y. M. A. J. Am. Chem. Soc.
2006, 128, 2859-2872. (b) Snyder, S. A.; Corey, E. J. J. Am. Chem. Soc.
2006, 128, 740-742. (c) Schnermann, M. J.; Boger, D. L. J. Am. Chem.
Soc. 2005, 127, 15704-15705.
(3) (a) Bhatt, R. K.; Shin, D. S.; Falck, J. R.; Mioskowski, C. Tetrahedron
Lett. 1992, 33, 4885-4888. (b) Belosludtsev, Y. Y.; Bhatt, R. K.; Falck,
J. R. Tetrahedron Lett. 1995, 36, 5881-5882. (c) Falck, J. R.; Bhatt, R.
K.; Reddy, K. M.; Ye, J. Synlett 1997, 481-482.
(4) Linderman, R. J.; Graves, D. M.; Kwochka, W. R.; Ghannam, A. F.;
Anklekar, T. V. J. Am. Chem. Soc. 1990, 112, 7438-7439.
(5) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1-5.
(6) Falck, J. R.; Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973-
5982.
(7) Ye, J.; Bhatt, R. K.; Falck, J. R. Tetrahedron Lett. 1993, 34, 8007-8010.
(8) Falck, J. R.; Barma, D.; Mohapatra, S.; Bandyopadhyay, A.; Reddy, K.
M.; Qi, J.; Campbell, W. Bioorg. Med. Chem. Lett. 2004, 14, 4987-4990.
9
790
J. AM. CHEM. SOC. 2007, 129, 790-793
10.1021/ja064948q CCC: $37.00 © 2007 American Chemical Society