Dendritic Oxybathophenanthroline Ligands towards CoII
FULL PAPER
Diego, San Francisco, Singapore, Sydney, Tokyo, 2004, vol. 1,
25–39; b) A. von Zelewsky, Stereochemistry of Coordination
Compounds, Wiley, Chichester, New York, 1996.
part of the AAЈBBЈ system, 4 H, Har), 7.40 (d, J = 5 Hz, 2 H, Har),
7.88 (s, 2 H, Har), 9.08 (d, J = 5 Hz, 2 H, Har) ppm. 13C NMR
(100 MHz, CDCl3): δ = 70.0, 70.1, 70.2, 101.7, 101.7, 106.5, 106.6,
115.2, 123.6, 124.0, 126.5, 127.6, 128.1, 128.3, 128.6, 130.6, 131.1,
136.8, 136.9, 139.3, 139.4, 147.0, 148.1, 149.8, 159.1, 160.1, 160.2
ppm. MS (FAB, NBA): m/z (%) = 1818.6 ([M + H]+, 17), 303.1
(100).
[2]
[3]
a) M. Yamada, Y. Tanaka, Y. Yoshimoto, S. Kuroda, I. Shi-
mao, Bull. Chem. Soc. 1992, 65, 1006–1011; b) J.-C. Chambron,
J.-P. Sauvage, E. Amouyal, P. Koffi, New J. Chem. 1985, 9, 527–
529; c) E. Amouyal, A. Homsi, J.-C. Chambron, J.-P. Sauvage,
J. Chem. Soc., Dalton Trans. 1990, 1841–1845; d) Y. Jenkins,
J. K. Barton, J. Am. Chem. Soc. 1992, 114, 8736–8738; e) V. W.-
W. Yam, K. K.-W. Lo, K.-K. Cheung, R. Y.-C. Kong, J. Chem.
Soc., Chem. Commun. 1995, 1191–1193.
a) T. Mizuno, W.-H. Wie, L. R. Eller, J. L. Sessler, J. Am. Chem.
Soc. 2002, 124, 1134–1135; b) P. Anzenbacher Jr., D. S. Tyson,
K. Jurisková, F. N. Castellano, J. Am. Chem. Soc. 2002, 124,
6232–6233; c) D. S. Tyson, C. R. Luman, X. Zhou, F. N. Cas-
tellano, Inorg. Chem. 2001, 40, 4046–4071; d) D. S. Tyson, F. N.
Castellano, Inorg. Chem. 1999, 38, 4382–4383; e) D. S. Tyson,
I. Gryczynski, F. N. Castellano, J. Phys. Chem. A 2000, 104,
2919–2924; f) W. E. Ford, M. A. J. Rodgers, J. Phys. Chem.
1992, 96, 2917–2920; g) N. Armaroli, Chem. Soc. Rev. 2001,
30, 113–124.
a) F. M. MacDonnel, S. Bodige, Inorg. Chem. 1996, 35, 5758–
5759; b) S. Bodige, A. S. Torres, D. J. Maloney, D. Tate, G. R.
Kinsel, A. K. Walker, F. M. MacDonnel, J. Am. Chem. Soc.
1997, 119, 10364–10369; c) F. M. MacDonnel, M.-J. Kim, S.
Bodige, Coord. Chem. Rev. 1999, 185/186, 535–549; d) M.-J.
Kim, F.-M. MacDonnel, M. E. Gimon-Kinsel, T. Du Bois, N.
Asgharian, J. C. Griener, Angew. Chem. Int. Ed. 2000, 39, 615–
619; e) F. M. MacDonnel, M. D. Meser Ali, M.-J. Kim, Inorg.
Chem. 2000, 39, 203–225.
a) G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendrimers
and Dendrons, Wiley-VCH, Weinheim 2001; b) J. M. J. Fréchet,
D. A. Tomalia, Dendrimers and Other Dendritic Polymers,
Wiley, Chichester 2001; c) Dendrimers, V: C. A. Schalley, F.
Vögtle, Top. Curr. Chem. 2003, 228, and previous volumes I–
IV.
a) J.-F. Nierengarten, D. Felder, J.-F. Nicoud, Tetrahedron Lett.
1999, 40, 273–276; b) J.-F. Nierengarten, C. R. Chim. 2003, 6,
725–733; c) E. Gumienna-Kontecka, Y. Rio, C. Bourgogne, M.
Elhabiri, R. Louis, A.-M. Albrecht-Gary, J.-F. Nierengarten,
Inorg. Chem. 2004, 43, 3200–3209.
S. Serroni, S. Campagna, A. Juris, M. Venturi, V. Balzani, D.
Denti, Gazz. Chim. Ital. 1994, 124, 423–427.
a) F. Vögtle, M. Plevoets, M. Nieger, G. C. Azzellini, A. Credi,
L. De Cola, V. De Marchis, M. Venturi, V. Balzani, J. Am.
Chem. Soc. 1999, 121, 6290–6298; b) M. Plevoets, F. Vögtle, L.
De Cola, V. Balzani, New J. Chem. 1999, 23, 63–69; c) D. S.
Tyson, C. R. Luman, F. N. Castellano, Inorg. Chem. 2002, 41,
3578–3586; d) T. H. Ghaddar, J. F. Wishart, J. P. Kirby, J. K.
Whitesell, M. A. Fox, J. Am. Chem. Soc. 2001, 123, 12832–
12836; e) J. Issberner, F. Vögtle, L. De Cola, V. Balzani, Chem.
Eur. J. 1997, 3, 706–712.
4,7-Bis[4Ј-(3ЈЈ,5ЈЈ-bis{3ЈЈЈ,5ЈЈЈ-bis[3ЈЈЈЈ,5ЈЈЈЈ-bis(benzyloxy)benzyl-
oxy]benzyloxy}benzyl)phenyl]-1,10-phenanthroline (L3G): 4,7-Bis(4Ј-
hydroxyphenyl)-1,10-phenanthroline (8) (40.0 mg, 0.11 mmol), den-
dritic Fréchet-type G3 bromide 12 (381.9 mg, 0.23 mmol), NaH
(9.7 mg, 0.24 mmol, 60% in paraffin) in dry DMF (15 mL). Col-
umn chromatography (SiO2, CH2Cl2/MeOH, 50:1 to 20:1) gave a
brownish viscous oil (360.0 mg, 93%). Rf = 0.55 (CH2Cl2/MeOH,
10:1). 1H NMR (400 MHz, CDCl3): δ = 4.86 (s, 16 H, OCH2), 4.89
(s, 8 H, OCH2), 4.92 (s, 32 H, OCH2), 4.95 (s, 4 H, OCH2), 6.49
(m, 12 H, Har), 6.61 (m, 26 H, Har), 6.65 (d, J = 2 Hz, 4 H, Har),
7.03 (AAЈ part of the AAЈBBЈ system, 4 H, Har), 7.18–7.34 (m, 80
H, Har), 7.36 (BBЈ part of the AAЈBBЈ system, 4 H, Har), 7.42 (d,
J = 5 Hz, 2 H, Har), 7.84 (s, 2 H, Har), 9.11 (d, J = 5 Hz, 2 H, Har)
ppm. 13C NMR (100 MHz, CDCl3): δ = 70.0, 70.1, 70.2, 70.3,
101.6, 101.7, 101.8 106.5, 106.6, 106.8, 115.2, 123.6, 124.0, 126.5,
127.6, 128.0, 128.6, 130.6, 131.1, 136.9, 139.3, 139.4, 139.5, 147.0,
148.1, 149.8, 159.1, 160.1, 160.2, 160.3 ppm. MS (MALDI-TOF,
DHB): m/z = 3515.9 (34) [M + H]+ , 1940.7 (24), 1621.5 (100).
[4]
Liquid–Liquid Extraction Procedure: Extraction studies were per-
formed at 25 1 °C in 2 cm3 microcentrifuge tubes by mechanical
shaking. The phase ratio V(org):V(w) was 1:1 (0.5 cm3 each); the
shaking period was 30 min. The extraction equilibrium was
achieved during this period. All samples were centrifuged after ex-
traction. The copper concentration in both phases was determined
radiometrically using γ-radiation [64Cu, NaI(Tl) scintillation
counter Cobra II/Canberra Packard]. The aqueous solution was
adjusted using 0.05 mol·dm–3 2-[N-morpholino]ethanesulfonic acid
(MES)/ NaOH (pH = 5.3–5.9).
[5]
[6]
Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS):
Fluorescence measurements were carried out by use of a spectrom-
eter system described elsewhere.[30] The ligands (L0G–L3G) were dis-
solved in CHCl3. The total concentration of the ligand was 1·10–5
mol·dm–3. The fluorescence of solutions with increasing concentra-
tion of added CuII trifluoromethanesulfonate were measured. The
ligand to CuII ratio was varied from 10:1 to 1:1. The fluorescence
of the non-complexed ligand was excited by 130 fs laserpulses at
266 nm. The repetition rate of the laser system was 1 kHz. The
emitted fluorescence was focussed into a 270 mm spectrograph (Ac-
ton Research) and the spectrum was measured by an intensified
CCD (charged coupled device) camera (LaVision). The gate of the
camera system was set to be 120 ps and the observed wavelength
range was set from 350 nm to 510 nm. The range for time-resolved
measurements was limited from 0 to 4000 ps with steps of 25 ps.
[7]
[8]
[9]
N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Cam-
pagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am. Chem.
Soc. 2003, 125, 5356–5365.
a) D. Tzalis, Y. Tor, Tetrahedron Lett. 1996, 37, 8293–8296; b)
Y. To r, C. R. Chim. 2003, 6, 755–766.
a) P. C. Alford, M. J. Cook, A. P. Lewis, G. S. G. McAuliffe, V.
Skarda, A. J. Thomson, J. L. Glasper, D. J. Robbins, J. Chem.
Soc., Perkin Trans. 2 1985, 705–709; b) F. H. Case, P. F.
Strohm, J. Org. Chem. 1962, 27, 1641–1643; c) F. H. Case, J.
Org. Chem. 1951, 16, 1541–1545.
E. H. Vickery, L. F. Pahler, E. J. Eisenbraun, J. Org. Chem.
1979, 44, 4444–4446.
a) C. J. Hawker, J. M. J. Fréchet, J. Am. Chem. Soc. 1990, 112,
7638–7647; b) C. J. Hawker, J. M. J. Fréchet, J. Chem. Soc.
Chem. Commun. 1990, 1010–1013.
a) P. Ballesteros, R. M. Claramunt, J. Elguero, Tetrahedron
1987, 43, 2557–2564; b) S. Strömberg, M. Oksman, L. Zhang,
K. Zetterberg, Acta Chem. Scan. 1995, 49, 689–695; c) S. Ser-
[10]
[11]
Acknowledgments
Financial support by the Saxon State Ministry of Science and Art
(project 4–7531.50–03–0370–01/4) is acknowledged with thanks.
We are grateful for advice by Dr. H.-J. Josel (Roche Diagnostics)
during earlier studies on luminescent complexes.
[12]
[13]
[1] a) C. R. Luman, F. N. Castellano, in: Comprehensive Coordina-
tion Chemistry II: From Biology to Nanotechnology (Eds: J. A.
McCleverty, T. J. Meyer), Elsevier-Pergamon, Amsterdam,
Boston, Heidelberg, London, New York, Oxford, Paris, San
[14]
Eur. J. Inorg. Chem. 2005, 4501–4508
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4507