602 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 4
Letters
(16) Robert, J.; Jarry, C. Multidrug resistance reversal agents. J. Med.
Chem. 2003, 46, 4805-4817.
investigation and can be a very useful lead for the development
of clinically useful MDR modulators.
(17) Sorbera, L. A.; Castaner, J.; Silvestre, J. S.; Baye´s, M. Zosuquidar
trihydrochloride. Drugs Future 2003, 28, 125-136.
Supporting Information Available: Lowest energy conforma-
tions of 3a-3d (Figure S1); experimental details for the synthesis
of the reported compounds; and chemical and physical character-
istics (Table S1), IR and 1H NMR spectra (Table S2), and elemental
analyses (Table S3) of compounds 2, 3a-d, and 4a-d. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(18) Tan, B.; Piwnica-Worms, D.; Ratner, L. Multidrug resistance
transporters and modulation. Curr. Opin. Oncol. 2000, 12, 450-
458.
(19) Teodori, E.; Dei, S.; Garnier-Suillerot, A.; Gualtieri, F.; Manetti, D.;
Martelli, C.; Romanelli, M. N.; Scapecchi, S.; Paiwan, S.; Salerno,
M. Exploratory chemistry toward the identification of a new class
of MDR reverters inspired by pervilleine and verapamil models. J.
Med. Chem. 2005, 48, 7426-7436.
(20) Wenlock, M. C.; Austin, R. P.; Barton, P.; Davis, A. M.; Leeson, P.
D. A comparison of physiochemical properties profiles of develop-
ment and marketed oral drugs. J. Med. Chem. 2003, 46, 1250-1256.
(21) Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K.
W.; Kopple, K. D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615-
2623.
(22) Gualtieri, F.; Romanelli, M. N.; Teodori, E. The frozen analog
approach in medicinal chemistry. In Progress in Medicinal Chemistry;
Choudhary, M. I., Ed.; Studies in Medicinal Chemistry, Vol. 1;
Harwood Academic Publishers: Amsterdam, The Netherlands, 1996;
pp 271-317.
(23) Tomioka, H.; Oshima, K.; Nozaki, H. Cerium catalyzed selective
oxidation of secondary alcohols in the presence of primary ones.
Tetrahedron Lett. 1982, 23, 539-542.
(24) Franciskovich, J. B.; Herron, D. K.; Linebarger, J. H.; A. L., M.;
Masters, J. J.; Mendel, D.; Merritt, L.; Ratz, A. M.; Smith, G. F.;
Weigel, L. O.; Wiley, M. R.; Yee, Y. K. Preparation of N-(2-pyridyl)-
3-(benzoylamino)pyridine-2-carboxamide derivatives as antithrom-
botics. World Patent WO 2004108677, 2004.
(25) Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. An improved
method for reductive alkylation of amines using titanium(IV)
isopropoxide and sodium cyanoborohydride. J. Org. Chem. 1990,
55, 2552-2554.
(26) Oliveira, P. R.; F., W.; Basso, E. A.; Goncalves, R. A. C.; Pontes,
R. M. Structural characterization of two novel potential anticho-
linesterasic agents. J. Mol. Struct. 2003, 657, 191-198.
(27) Dei, S.; Budriesi, R.; Paiwan, S.; Ferraroni, M.; Chiarini, A.; Garnier-
Suillerot, A.; Manetti, D.; Martelli, C.; Scapecchi, S.; Teodori, E.
Diphenylcyclohexylamine derivatives as new potent multidrug
resistant (MDR) modulators. Bioorg. Med. Chem. 2005, 13, 985-
998.
(28) Zhang, S.; Reith, M. E. A.; Dutta, A. K. Design, synthesis, and
activity of novel cis- and trans-3,6-disubstituted pyran biomimetics
of 3,6-disubstituted piperidine as potential ligands for the dopamine
transporter. Bioorg. Med. Chem. Lett. 2003, 13, 1591-1595.
(29) Dei, S.; Teodori, E.; Garnier-Suillerot, A.; Gualtieri, F.; Scapecchi,
S.; Budriesi, R.; Chiarini, A. Structure-activity relationships and
optimisation of the selective MDR modulator 2-(3,4-dimethoxyphe-
nyl)-5-(9-fluorenylamino)-2-(methylethyl) pentanenitrile (SC11) and
its N-methyl derivative (SC17). Bioorg. Med. Chem. 2001, 9, 2673-
2682.
(30) Teodori, E.; Dei, S.; Quidu, P.; Budriesi, R.; Chiarini, A.; Garnier-
Suillerot, A.; Gualtieri, F.; Manetti, D.; Romanelli, M. N.; Scapecchi,
S. Design, synthesis, and in vitro activity of catamphiphilic reverters
of multidrug resistance: Discovery of a selective, highly efficacious
chemosensitizer with potency in the nanomolar range. J. Med. Chem.
1999, 42, 1687-1697.
References
(1) Mitscher, L. A.; Pillai, S. P.; Gentry, E. J.; Shankel, D. M. Multiple
drug resistance. Med. Res. ReV. 1999, 19, 477-496.
(2) Volm, M.; Mattern, J. Resistance mechanisms and their regulation
in lung cancer. Crit. ReV. Oncog. 1996, 7, 227-244.
(3) Aszalos, A.; Ross, D. D. Biochemical and clinical aspects of efflux
pump related resistance to anti-cancer drugs. Anticancer Res. 1998,
18, 2937-2944.
(4) Hrycyna, C. A.; Gottesman, M. M. Multidrug ABC transporters from
bacteria to man: an emerging hypothesis for the universality of
molecular mechanism and functions. Drug Resist. Updates 1998, 1,
81-83.
(5) Johnstone, R. W.; Ruefli, A. A.; Smyth, M. J. Multiple physiological
functions for multidrug transporter P-glycoprotein? Trends Biochem.
Sci. 2000, 25, 1-6.
(6) Rosenberg, M. F.; Kamis, A. B.; Callaghan, R.; Higgins, C. F.; Ford,
R. C. Three dimensional structures of the mammalian multidrug-
resistant P-glycoprotein demonstrate major conformational changes
in the transmembrane domain upon nucleotide binding. J. Biol. Chem.
2003, 278, 8294-8299.
(7) Rosenberg, M. F.; Callaghan, R.; Modok, S.; Higgins, C. F.; Ford,
R. C. Three-dimensional structure of P-glycoprotein. J. Biol. Chem.
2005, 280, 2857-2862.
(8) Chang, G. Structure of MsbA from Vibrio cholera: A multidrug
resistance ABC transporter homolog in a closed conformation. J. Mol.
Biol. 2003, 330, 419-430.
(9) Stenham, D. R.; Campbell, J. D.; Sanson, M. S.; Higgins, C. F.; Kerr,
I. D.; Linto, K. J. An atomic detail model for the human ATP binding
cassette transporter P-glycoprotein derived from disulfide cross-
linking and homology modeling. FASEB J. 2003, 17, 2287-2289.
(10) Seigneuret, M.; Garnier-Suillerot, A. A structural model for the open
conformation of the mdr1 P-glycoprotein based on the MsbA
structure. J. Biol. Chem. 2003, 278, 30115.
(11) Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in
cancer: Role of ATP-dependent transporters. Nat. ReV. Cancer 2002,
2, 48-58.
(12) Murray, D. S.; Schumacher, M. A.; Brennan, R. G. Crystal structure
of QacR-diamidine complexes reveal additional multidrug-binding
modes and a novel mechanism of drug charge neutralization. J. Biol.
Chem. 2004, 279, 14365-14371.
(13) Schumacher, M. A.; Miller, M. C.; Brennan, R. G. Structural
mechanism of the simultaneous binding of two drugs to a multidrug
binding protein. EMBO J. 2004, 23, 2923-2930.
(14) Teodori, E.; Dei, S.; Martelli, C.; Scapecchi, S.; Gualtieri, F. The
functions and structure of ABC transporters: implications for the
design of new inhibitors of Pgp and MRP1 to control multidrug
resistance (MDR). Curr. Drug Targets 2006, 7, 893-909.
(15) Avendano, C.; Menendez, J. C. Inhibitors of multidrug resistance to
antitumor agents (MDR). Curr. Med. Chem. 2002, 9, 159-193.
JM0614432