of designed hybrid structure. Kessler and co-workers were the
first to study and to demonstrate the potential of such molecules
as peptidomimetics and artificial receptors for host-guest
chemistry.7 Since then, several types of cyclic oligomers
incorporating open-chain,8 pyranoid,9 furanoid sugar amino
acid10 and oxetane units11 have been synthesized and their
conformational properties were thoroughly examined.9-11 It has
been demonstrated that incorporation of SAAs into the peptidic
backbone can broaden the dynamic spectrum and widen the
conformational space of the peptide, increasing consequently
the potency as well as the specificity of the given bioactive
compounds. Indeed, potent antitumor agents12 and inhibitors of
P-selectines13 have been discovered from these studies indicating
the potential of this approach in drug development.
Rapid Synthesis of Cyclodepsipeptides Containing
a Sugar Amino Acid or a Sugar Amino Alcohol
by a Sequence of a Multicomponent Reaction and
Acid-Mediated Macrocyclization
Carine Bughin, Ge´raldine Masson, and Jieping Zhu*
Institut de Chimie des Substances Naturelles, CNRS, 91198
Gif-sur-YVette Cedex, France
ReceiVed October 20, 2006
A synthesis allowing one to systematically modify the amino
acid and the carbohydrate residues, as well as the size of the
macrocycle, is highly needed to fully exploit the potential of
such hybride structures in searching for new active compounds.
Previously, most of the cyclic SAAs have been synthesized by
stepwise amide bond formation followed by macrolactamiza-
tion.8-11,14 We report herein an alternative and highly efficient
(5) (a) Nicolaou, K. C.; Flo¨rke, H.; Egan, M. G.; Barth, T.; Estevez,
V. A. Tetrahedron Lett. 1995, 36, 1775. (b) Goodnow, R. A., Jr.; Richou,
A.-R.; Tam, S. Tetrahedron Lett. 1997, 38, 3195. (c) Goodnow, R. A., Jr.;
Tam, S.; Pruess, D. L.; McComas, W. W. Tetrahedron Lett. 1997, 38, 3199.
(6) Smith, M. D.; Claridge, T. D. W.; Tranter, G. E.; Sansom, M. S. P.;
Fleet, G. W. J. J. Chem. Soc., Chem. Commun. 1998, 2041.
Cyclodepsipeptides incorporating a sugar amino acid (alco-
hol) have been synthesized. A three-component reaction of
a sugar amino acid (SAA) derivative, an aldehyde, and a
dipeptide isonitrile in refluxing methanol afforded the
corresponding 5-aminooxazole which, after saponification,
underwent a trifluoroacetic acid promoted macrocyclization
to furnish the cyclic sugar amino acids.
(7) Graf von Roedern, E.; Kessler, H. Angew. Chem., Int. Ed. 1994, 33,
687.
(8) (a) Mayes, B. A.; Stetz, R. J. E.; Ansell, C. W. G.; Fleet, G. W. J.
Tetrahedron Lett. 2004, 45, 153. (b) Mayes, B. A.; Simon, L.; Watkin,
D. J.; Ansell, C. W. G.; Fleet, G. W. J. Tetrahedron Lett. 2004, 45, 157.
(9) (a) Graf von Roedern, E.; Lohof, E.; Hessler, G.; Hoffmann, M.;
Kessler, H. J. Am. Chem. Soc. 1996, 118, 10156. (b) Lohof, E.; Planker,
E.; Mang, C.; Bukhart, F.; Dechantsreiter, M. A.; Haubner, R.; Wester,
H.-J.; Schwaiger, M.; Ho¨lzemann, G.; Goodman, S. L.; Kessler, H. Angew.
Chem., Int. Ed. 2000, 39, 2761. (c) Locardi, E.; Sto¨ckle, M.; Gruner,
S. A. W.; Kessler, H. J. Am. Chem. Soc. 2001, 123, 8189. (d) Sto¨ckle, M.;
Voll, G.; Gunther, R.; Lohof, E.; Locardi, E.; Gruner, S. A. W.; Kessler,
H. Org. Lett. 2002, 4, 2501. (e) Gruner, S. A. W.; Truffault, V.; Voll, G.;
Locardi, E.; Sto¨ckle, M.; Kessler, H. Chem.-Eur. J. 2002, 4365. (f) Van
Well, R.; Marinelli, L.; Erkelens, K.; van der Marel, G. A.; Lavecchia, A.;
Overkleeft, H.; van Boom, J.; Kessler, H.; Overhand, M. Eur. J. Org. Chem.
2003, 2303. (g) Raunkjaer, M.; El Oualid, F.; van der Marel, G. A.;
Overkleeft, H.; Overhand, M. Org. Lett. 2004, 6, 3167. (h) Me´nand, M.;
Blais, J.-C.; Hamon, L.; Vale´ry, J.-M.; Xie, J. J. Org. Chem. 2005, 70,
4423. (i) Billing, J. F.; Nilsson, U. J. Tetrahedron 2005, 61, 863.
(10) (a) Van Well, R.; Overkleeft, H.; Overhand, M.; Vang Carstenen,
E.; van der Marel, G. A.; van Boom, J. Tetrahedron Lett. 2000, 41, 9331.
(b) Van Well, R.; Marinelli, L.; Altona, C.; Erkelens, K.; Siegal, G.; van
Raaij, M.; Llamas-Saiz, A. L.; Kessler, H.; Novellino, E.; Lavecchia, A.;
van Boom, J.; Overhand, M. J. Am. Chem. Soc. 2003, 125, 10822. (c)
Grotenberg, G. M.; Timmer, M. S. M.; Llamas-Saiz, A. L.; Verdoes, M.;
van der Marel, G. A.; van Raaij, M.; Overkleeft, H.; Overhand, M. J. Am.
Chem. Soc. 2004, 126, 3444. (d) Grotenberg, G. M.; Buizert, A. E. M.;
Llamas-Saiz, A. L.; Spalburg, E.; van Hooft, P. A. V.; de Neeling, A. J.;
Noort, D.; van Raaij, M.; van der Marel, G. A.; Overkleeft, H.; Overhand,
M. J. Am. Chem. Soc. 2006, 128, 7559. (e) Chakraborty, T. K.; Ghosh, S.;
Jayaprakash, S. Curr. Med. Chem. 2002, 9, 421. (f) Chakraborty, T. K.;
Srinivasu, P.; Bikshapathy, E.; Nagaraj, R.; Vairamani, M.; Kiran Kumar,
S.; Kunwar, A. C. J. Org. Chem. 2003, 68, 6257.
Amino acids and sugars are two major building blocks from
which the biopolymers of life are formed in nature. The sugar
amino acids (SAAs), defined as sugars containing at least one
amino and at least one carboxyl group, also exist in nature.1
For example, the sialic acid, responsible for many inter- and
intracellular recognition events, is found in all living organisms
with the exception of certain bacteria.2 Glucosaminuronic acid
is found in A-40926, a structurally complex glycopeptide of
the vancomycine family of antibiotics.3 Synthetic linear oligo-
mers of SAAs, first introduced by Fuchs and Lehmann in mid
1970s,4 have been proposed to mimic oligosaccharides and
oligonucleotides5 and have been shown to adopt well-defined
three-dimensional structures.6 On the other hand, cyclic peptides
incorporating sugar amino acids belong to a relatively new type
* To whom correspondence should be addressed. Fax: Int. code + 33 1
69077247.
(1) (a) Gervay-Hague, J.; Weathers, T. M. J. Carbohydr. Chem. 2002,
21, 867. (b) Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H. Chem.
ReV. 2002, 102, 491. (c) Schweizer, F. Angew. Chem., Int. Ed. 2002, 41,
230. (d) Chakraborty, T. K.; Jayaprakash, S. Curr. Med. Chem. 2002, 9,
421.
(2) Simanek, E. E.; McGarvey, G. J.; Jablonowski, J. A.; Wong, C.-H.
Chem. ReV. 1998, 98, 833.
(3) (a) Waltho, J. P.; Williams, D. H.; Selva, E.; Ferrari, P. J. Chem.
Soc., Perkin Trans. I 1987, 2103. (b) Zhu, J. Expert Opin. Ther. Pat. 1999,
9, 1005. (c) Nicolaou, K. C.; Boddy, C. N. C.; Bra¨se, S.; Winssinger, N.
Angew. Chem., Int. Ed. 1999, 38, 2096.
(4) (a) Fuchs, E. F.; Lehmann, J. Chem. Ber. 1975, 108, 2254. (b) Fuchs,
E. F.; Lehmann, J. Carbohydr. Res. 1976, 49, 267. (c) St Hilaire, P. M.;
Meldal, M. Angew. Chem., Int. Ed. 2000, 39, 1162.
(11) Fleet, G. W. J.; Johnson, S. W.; Jones, J. H. J. Pept. Sci. 2006, 12,
559.
(12) (a) Gruner, S. A. W.; Ke´ri, G.; Schwab, R.; Venetianer, A.; Kessler,
H. Org. Lett. 2001, 3, 3723. (b) Haubner, R.; Gratias, R.; Diefenbach, B.;
Goodman, S. L.; Jonczyk, A.; Kessler, J. J. Am. Chem. Soc. 1996, 118,
7461.
(13) Tsai, C.-Y.; Huang, X.; Wong, C.-H. Tetrahedron Lett. 2000, 41,
9499.
10.1021/jo0621874 CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/25/2007
1826
J. Org. Chem. 2007, 72, 1826-1829