Nouri Sefat, Deris & Niknam
FULL PAPER
Preparation of 3-diethylenetriamine-propylsilica
(DTPS)
Acknowledgment
Financial support for this work by the Research
Council of Persian Gulf University, Bushehr, Iran, is
gratefully acknowledged. Also, we are thankful to Dr
Mohammad Mahdi Doroodmand for helpful comments.
To a mixture of chloropropyl silica (25 g) in anhy-
drous xylene (250 mL) an excess of diethylenetriamine
(25 mL) was added and the mixture was refluxed with
stirring for 24 h. After refluxing, the reaction was
stopped and the modified silica was cooled to room
temperature, transferred to a vacuum glass filter, and
washed with xylene and large excess of ethanol in turn.
The silica chemically bonded with propyl-diethylene-
triamine was dried under vacuum overnight at 80 ℃
and 26.23 g was obtained.
References
1
Greene, T. W.; Wuts, P. G. M. In Protective Groups in Or-
ganic Synthesis, 4th ed., Wiley, New York, 2007.
Kochhar, K. S.; Bal, B. S.; Deshpande, R. P.; Rajadhyaksha,
S. N.; Pinnick, H. W. J. Org. Chem. 1983, 48, 1765.
Trost, B. M.; Lee, C. J. Am. Chem. Soc. 2001, 123, 12191.
Sandberg, M.; Sydnes, L. K. Org. Lett. 2000, 2, 687.
Held, H.; Rengstle, A.; Mayer, D. In Ullman’s Encyclopedia
of Industrial Chemistry, 5th ed., Vol. A1, Ed.: Gerhartz, W.,
Wiley-VCH, New York, 1985, p. 68.
2
3
4
5
Preparation of silica-bonded propyl-diethylene-
triamine-N-sufamic acid (SPDTSA)
To a magnetically stirred mixture of 3-diethylene-
triamine-propylsilica (DTPS, 5 g) in CHCl3 (20 mL),
chlorosulfonic acid (2.00 g, 18 mmol) was added drop-
wise at 0 ℃ during 2 h. After the addition was com-
plete, the mixture was stirred for 2 h until all HCl was
removed from reaction vessel. The mixture was then
filtered, washed with methanol (30 mL) and dried at
room temperature to give the silica-bonded propyl-
diethylenetriamine-N-sulfamic acid (SPDTSA) as a
white powder (5.39 g). IR, BET, and TGA were running
for characterization of SPDTSA (see supplementary
materials).
6
7
8
9
Freeman, F.; Karcherski, E. M. J. Chem. Eng. Data 1977,
22, 355.
Jr Frick, J. G.; Harper, R. J. Jr J. Appl. Polym. Sci. 1984, 29,
1433.
Van Heerden, F. R.; Huyser, J. J.; Bradley, D.; Williams, G.;
Holzapfel, C. W. Tetrahedron Lett. 1998, 39, 5281.
Sandberg, M.; Sydnes, L. K. Tetrahedron Lett. 1998, 39,
6361.
10 Gregory, M. J. J. Chem. Soc. (B) 1970, 1201.
11 Jin, T. S.; Sun, G.; Li, Y. W.; Li, T. S. Green Chem. 2002, 4,
255.
12 Chakraborti, A. K.; Thilagavathi, R.; Kumar, R. Synthesis
2004, 831.
13 Karimi, B.; Maleki, J. J. Org. Chem. 2003, 68, 4951.
14 Xu, R.; Zhang, J.; Tian, Y.; Zhou, J. J. Iran. Chem. Soc.
2009, 6, 443.
15 Ballini, R.; Bordoni, M.; Bosica, G.; Maggi, R.; Sartori, G.
Tetrahedron Lett. 1998, 39, 7587.
16 Nagy, N. M.; Jakab, M. A.; Konya, J.; Antus, S. Appl. Clay
Sci. 2002, 21, 213.
17 Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F. Catal.
Commun. 2006, 7, 499.
18 Khan, A. T.; Choudhury, L. H.; Ghosh, S. J. Mol. Catal. A:
Chem. 2006, 255, 230.
19 Deka, N.; Kalita, D. J.; Borah, R.; Sarma, J. C. J. Org.
Chem. 1997, 62, 1563.
20 Wang, M.; Song, Z.; Gong, H.; Jiang, H. Synth. Commun.
2008, 38, 961.
21 Azarifar, D.; Ghasemnejad, H.; Ramzanian-lehmali, F.
Mendeleev Commun. 2005, 15, 209.
22 Jermy, B. R.; Pandurangan, A. Catal. Commun. 2008, 9,
577.
23 Wang, Q. Y.; Sheng, S. R.; Wei, M. H.; Xie, Z. L.; Liu, X.
L. Synth. Commun. 2007, 37, 1019.
24 Niknam, K.; Saberi, D.; Nouri Sefat, M. Tetrahedron Lett.
2009, 50, 4058.
25 Ghorbani-Vaghei, R.; Amiri, M.; Moshfeghifar, N.; Veisi,
H.; Dadamahaleh, S. A. J. Iran. Chem. Soc. 2009, 6, 754.
26 Wang, M.; Tian, G. F.; Song, Z. G.; Jiang, H. Chin. Chem.
Lett. 2009, 20, 1034.
General procedure for the synthesis of 1,1-diacetates
To a mixture of aromatic aldehyde (1 mmol) and
acetic anhydride (15 mmol) was added SPDTSA cata-
lyst (0.01 g) and the mixture was stirred at room tem-
perature. When the reaction was complete as judged by
TLC, CH2Cl2 (5 mL) was added and the reaction mix-
ture was filtered and the remaining solid was washed
with CH2Cl2 (5 mL×3) in order to separate the catalyst.
The CH2Cl2 layer was washed with water (10 mL×2)
and dried over anhydrous MgSO4. After removal of the
solvent in vacuo, the obtained residue was recrystallized
from ethanol.
Compound 1m (Table 3, Entry 13) 1H NMR
(CDCl3, 500 MHz) δ: 2.13 (s, 6H), 2.35 (s, 3H), 7.04 (d,
J=8.6 Hz, 1H), 7.55 (dd, J=8.6, 1.2 Hz, 1H), 7.78 (d, J
=2.4 Hz, 1H), 7.87 (s, 1H); 13C NMR (CDCl3, 125
MHz) δ: 21.12, 21.23, 84.77, 119.71, 125.40, 130.25,
131.24, 134.12, 147.61, 168.67, 169.45; IR (KBr) ν:
3060, 3015, 2360, 1760, 1490, 1370, 1200, 1120, 1085,
-
1
1060, 1000, 970, 945, 840, 745 cm . Anal calcd for
C13H13BrO6: C 45.24, H 3.80, Br 23.15; found C 45.06,
H 3.88.
Compound 1r (Table 3, Entry 18) 1H NMR
(CDCl3, 500 MHz) δ: 2.19 (s, 6H), 7.51 (t, J=7.6 Hz,
2H), 7.63—7.66 (m, 2 H), 7.95 (d, J=7.7 Hz, 2H); 13C
NMR (CDCl3, 125 MHz) δ: 21.01, 86.70, 129.32,
133.62, 134.69, 169.10, 189.23; IR (KBr) ν: 3060, 2955,
1765, 1725, 1710, 1600, 1450, 1380, 1230, 1200, 1050,
-
1
1015, 955, 900, 775, 695 cm .
27 Meshram, G. A.; Patil, V. D. Synth. Commun. 2010, 40,
2366
© 2011 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2011, 29, 2361— 2367