C O M M U N I C A T I O N S
Scheme 2
On the basis of the hypothesis that donor ligands are intimately
involved in the reductive elimination step, the conjugate allylation
of dibenzylidene acetone was examined in the presence of chiral
ligands. As depicted in Scheme 4, this preliminary survey revealed
that appreciable levels of asymmetric induction can be observed
in the catalytic conjugate allylation. Further experiments along these
lines will be reported in due course.
Acknowledgment. Support by the NIGMS (GM-59417) and
Merck Research Laboratories. J.D.S. acknowledges an ACS Nelson
J. Leonard/Organic Syntheses fellowship.
Supporting Information Available: Characterization and proce-
dures. This material is available free of charge via the Internet at http://
pubs.acs.org.
provides a convenient handle for alkene metathesis, and a ring-
closing version was readily accomplished with the NHC-derived
Hoveyda-Grubbs catalyst to give cyclohexenone 2, a compound
which is not readily available from other catalytic methods.15
Alternatively, regioselective Baeyer-Villiger oxidation can be
accomplished by treatment of the conjugate allylation product with
trimethylsilylperoxide in the presence of Lewis acid.16 This
transformation selectively provides enol ester 3 which can be readily
converted to a variety of functional groups, including the derived
carboxylic acid (see Scheme 2).
References
(1) (a) Tomioka, K.; Nagaoka, Y. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin,
1999; Vol. 3, p 1105. (b) Krause, N.; Hoffmann-Ro¨der, A. Synthesis 2001,
171. (c) Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. In Modern
Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim,
Germany, 2002; p 224.
(2) Review: Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221.
(3) Review: Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829.
(4) Asymmetric: (a) Gini, F.; Hessen, B.; Minnaard, A. J. Org. Lett. 2005,
7, 5309. (b) Nishikata, T.; Yamamoto, Y.; Gridnev, I. D.; Miyaura, N.
Organometallics 2005, 24, 5025. (b) Nishikata, T.; Yamamoto, Y.;
Miyaura, N. Chem. Commun. 2004, 1822. Racemic: (c) Nishikata, T.;
Yamamoto, Y.; Miyaura, N. Organometallics 2004, 23, 4317. (d)
Nishikata, T.; Yamamoto, Y.; Miyaura, N. Angew. Chem., Int. Ed. 2003,
42, 2768. (e) Denmark, S. E.; Amishiro, N. J. Org. Chem. 2003, 68, 6997.
(f) Cho, C. S.; Motofusa, S.; Ohe, K.; Uemura, S. J. Org. Chem. 1995,
60, 883.
Pd(trifluoroacetate)2 and Ni(acac)2 are ineffective catalysts for
the conjugate addition of allylB(pin) (<5% conversion). This
observation suggests that the reaction is not initiated by transmeta-
lation of the boronic ester with the catalyst as is observed for Rh-
(I)-17 and Pd(II)-catalyzed4d conjugate additions. On the basis of
recent studies by Ogoshi and Kurosawa18 and earlier work by
Mackenzie,19 it is plausible that these reactions proceed by Lewis
acid induced oxidative addition of Pd(0) and Ni(0) to the enone,
as depicted in Scheme 3 (I f II). The unique ability of the styryl
unit to activate the adjacent enone for reaction is likely to arise
from accelerated oxidative addition or reductive elimination. Recent
calculations by Echavarren suggest that reductive elimination of
bis(allyl)Pd complexes in the presence of donor ligands proceeds
by initial conversion to a slightly higher energy bis(η1-allyl)
complex, from which reductive elimination by 3,3′-coupling is
significantly more facile.20 It is plausible that dialkylidene ketones
participate in a similarly favorable 3,3′-reductive elimination
(Scheme 3, III f IV) but do so without adopting the higher energy
bis(η1-allyl) bonding mode. DFT calculations (B3LYP; Stuttgart
RSC 1997 ECP for Pd, 6-311+G* for others) suggest that reductive
elimination of a model substrate (III, R1 ) Me, R2 ) H, M ) Pd,
L ) PMe3) faces a small barrier (1.52 kcal/mol) for a reductive
coupling as shown; in contrast, a substrate with a methyl in place
of the pendent alkene faces a significantly higher barrier for
coupling (13.5 kcal/mol for 1,2-addition; 21.66 kcal/mol for the
1,4-adduct).21
(5) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am.
Chem. Soc. 1998, 120, 5579.
(6) Asymmetric: (a) Oi, S.; Taira, A.; Honma, Y.; Sato, T.; Inoue, Y.
Tetrahedron: Asymmetry 2006, 17, 598. (b) Oi, S.; Taira, A.; Honma,
Y.; Inoue, Y. Org. Lett. 2003, 5, 97. Racemic: (c) Oi, S.; Honma, Y.;
Inoue, Y. Org. Lett. 2002, 4, 667. (d) Murata, M.; Shimazaki, R.; Ishikura,
M.; Watanabe, S.; Masuda, Y. Synthesis 2002, 717. (e) Mori, A.; Danda,
Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. J. Am. Chem. Soc. 2001, 123,
10774.
(7) (a) Oi, S.; Moro, M.; Ito, H.; Honoma, Y.; Miyano, S.; Inoue, Y.
Tetrahedron 2002, 58, 91. (b) Huang, T.; Meng, Y.; Venkatraman, S.;
Wang, D.; Li, C.-J. J. Am. Chem. Soc. 2001, 123, 7451.
(8) Hayashi, T.; Tokunga, N.; Yoshida, K.; Han, J. W. J. Am. Chem. Soc.
2002, 124, 12102.
(9) Shintani, R.; Tokunaga, N.; Doi, H.; Hayashi, T. J. Am. Chem. Soc. 2004,
126, 6240.
(10) Aryl nucleophiles with copper catalysis: (a) Lee, K.-S.; Brown, M. K.;
Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 7182. (b)
Shi, M.; Wang, C.-J.; Zhang, W. Chem.sEur. J. 2004, 10, 5507. (c) Pen˜a,
D.; Lo´pez, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. Chem.
Commun. 2004, 1836. (d) Schinnerl, M.; Seitz, M.; Kaiser, A.; Reiser, O.
Org. Lett. 2001, 3, 4259.
(11) Racemic or auxiliary-based allylation: (a) Hosomi, A.; Sakurai, H. J. Am.
Chem. Soc. 1977, 99, 1673. (b) Lipshutz, B. H.; Hackmann, C. J. Org.
Chem. 1994, 59, 7437. (c) Majetich, G.; Casares, A. M.; Chapman, D.;
Behnke, M. Tetrahedron Lett. 1983, 24, 1909. (d) Shibata, I.; Kano, T.;
Kanazawa, N.; Fukuoka, S.; Baba, A. Angew. Chem., Int. Ed. 2002, 41,
1389. (e) Yanagisawa, A.; Habaue, S.; Yasue, K.; Yamamoto, H. J. Am.
Chem. Soc. 1994, 116, 6130. (f) Williams, D. R.; Kissel, W. S.; Li, J. J.
Tetrahedron Lett. 1998, 39, 8593. (g) Williams, D. R.; Mullins, R. J.;
Miller, N. A. Chem. Commun. 2003, 2220. (h) Lee, P. H.; Seomoon, D.;
Kim, S.; Nagaiah, K.; Damle, S. V.; Lee, K. Synthesis 2003, 2189.
(12) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P.
J. Am. Chem. Soc. 2004, 126, 16328.
Scheme 3
(13) Properties of P(NMe2)3: Clarke, M. L.; Cole-Hamilton, D. J; Slawin, A.
M. Z.; Woolins, J. D. Chem. Commun. 2000, 2065.
(14) Chung, K. G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1
2000, 15.
(15) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2000, 122, 8168.
(16) Go¨ttlich, R.; Yamakoshi, K.; Sasai, H.; Shibasaki, M. Synlett 1997, 971.
(17) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem.
Soc. 2002, 124, 5052.
(18) (a) Morita, M.; Inoue, K.; Ogoshi, S.; Kurosawa, H. Organometallics 2003,
22, 5468. (b) Ogoshi, S.; Yoshida, T.; Nishida, T.; Morita, M.; Kurosawa,
H. J. Am. Chem. Soc. 2001, 123, 1944.
Scheme 4
(19) (a) Johnson, J. R.; Tully, P. S.; Mackenzie, P. B.; Sabat, M. J. Am. Chem.
Soc. 1991, 113, 6172. (b) Grisso, B. A.; Johnson, J. R.; Mackenzie, P. B.
J. Am. Chem. Soc. 1992, 114, 5160.
(20) Me´ndez, M.; Cuerva, J. M.; Go´mez-Bengoa, E.; Ca´rdenas, D. J.;
Echavarren, A. M. Chem.sEur. J. 2002, 8, 3620.
(21) Consistent with the calculated lowest energy transition structure, quenching
the reaction with TMS-imidazole provides the E-enolsilane.
JA067878W
9
J. AM. CHEM. SOC. VOL. 129, NO. 8, 2007 2215