Efficient Synthesis of Tricyclic Benzobisoxazines
by Silica Gel Catalysis
Gae¨lle Spagnol, Andrzej Rajca,* and Suchada Rajca
Department of Chemistry, UniVersity of Nebraska,
Lincoln, Nebraska 68588-0304
ReceiVed December 28, 2006
FIGURE 1. 1,3-, 1,4-, and 3,1-benzoxazine cores. Examples of 6-aryl-
1,2-dihydro-4H-3,1-benzoxazines, 6-aryl-1,2-dihydro-4H-3,1-benzox-
azine-2-thiones, benzobisoxazine core, and Rassat’s diradical.
activity relationship (SAR) studies of 6-aryl-1,2-dihydro-4H-
3,1-benzoxazines and 6-aryl-1,2-dihydro-4H-3,1-benzoxazine-
2-thiones led to the development of the potent and selective
nonsteroidal progesterone receptor agonist Tanaproget (Figure
1).5,6 In addition, acridines with 1,2-dihydro-4H-3,1-benzoxazine
cores showed potent cytotoxic activities against selected human
cancer lines.7
A new method for the synthesis of tricyclic benzobisoxazines,
based upon silica gel-catalyzed formation of two 3,1-oxazine
rings, is reported. The reversibility of the condensation
reaction, forming an oxazine ring, allows for implementation
of silica gel catalyzed ketone exchange in benzobisoxazine,
thus enabling access to nonsymmetric derivatives of benzo-
bisoxazines.
The most effective, and widely used, approaches to 1,2-
dihydro-4H-3,1-benzoxazines are based upon the classical
method of condensation, that is the acid-catalyzed condensation
of o-aminobenzyl alcohols and aldehydes, or simple ketones.9,10
The condensation conditions using acetic acid11,12 or p-tolu-
enesulfonic acid5 in benzene or toluene provide moderate-to-
good yields of the benzoxazines products. This method was
applied by Rassat and co-workers to prepare the octamethyl
derivative of benzobisoxazine, which was oxidized to form
stable nitroxide diradical (Figure 1).11 To our knowledge, this
Benzoxazines, a well-known class of heterocyclic compounds,
are of importance in the development of high-performance
polymeric materials and in medicinal chemistry. Polybenzox-
azines, which are conveniently obtained by ring-opening
polymerization of 3,4-dihydro-2H-1,3-benzoxazine monomers,
provide a new class of thermosetting resins for polymer
composites with superior mechanical, flame-retardant, and
superhydrophobic properties, especially for aerospace applica-
tions.1 Derivatives of 3,4-dihydro-2H-1,3-benzoxazines and 2,3-
dihydro-1,4-benzoxazines are well explored in medicinal chem-
istry,2,3 with several drugs in clinical use. In contrast, 1,2-
dihydro-4H-3,1-benzoxazines have received less attention,
though derivatives with promising biological activity were
recently discovered (Figure 1).5-8 Recent syntheses and structure-
(5) Zhang, P.; Terefenko, E. A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen,
J.; Winneker, R.; Wrobel, J.; Yardley, J. Bioorg. Med. Chem. Lett. 2002,
12, 787.
(6) (a) Fensome, A.; Bender, R.; Chopra, R.; Cohen, J.; Collins, M. A.;
Hudak, V.; Malakian, K.; Lockhead, S.; Olland, A.; Svenson, K.; Terefenko,
E. A.; Unwalla, R. J.; Wilhelm, J. M.; Wolfrom, S.; Zhu, Y.; Zhang, Z.;
Zhang, P.; Winneker, R. C.; Wrobel, J. J. Med. Chem. 2005, 48, 5092. (b)
Zhang, Z.; Olland, A. M.; Zhu, Y.; Cohen, J.; Berrodin, T.; Chippari, S.;
Appavu, C.; Li, S.; Wilhem, J.; Chopra, R.; Fensome, A.; Zhang, P.; Wrobel,
J.; Unwalla, R. J.; Lyttle, C. R.; Winneker, R. C. J. Biol. Chem. 2005, 280,
28468.
(7) Charmantray, F.; Demeunynck, M.; Carrez, D.; Croisy, A.; Lansiaux,
A.; Bailly, C.; Colson, P. J. Med. Chem. 2003, 46, 967.
(8) N-Haloacetyl 1,2-dihydro-4H-3,1-benzoxazines with herbicidal activ-
ity: Kobzina, J. W. Chem. Abstr. 1977, 87, 79678e. Kobzina, J. W. U.S.
Patent 3,917,592, 1975.
(9) Holly, F. W.; Cope, A. C. J. Am. Chem. Soc. 1944, 66, 1875.
(10) Annelation of (2-iodophenyl)acetonitrile onto sterically hindered
propargylic alcohols was reported to produce 1,2-dihydro-4H-3,1-benzox-
azine derivatives in moderate yields: Tian, Q.; Pletnev, A. A.; Larock,
R. C. J. Org. Chem. 2003, 68, 339.
(11) Rassat, A.; Sieveking, U. Angew. Chem., Int. Ed. 1972, 11, 303.
(12) (a) Nguyen, T. T.; Amey, R. L.; Martin, J. C. J. Org. Chem. 1982,
47, 1024. (b) Neuvonen, K.; Pohtola, R.; Pihlaja, K. Magn. Reson. Chem.
1989, 27, 725. (c) Oka, H.; Tamura, T.; Miura, Y.; Teki, Y. J. Mater. Chem.
2001, 11, 1364.
(1) (a) Wang, C. F.; Su, Y. C.; Kuo, S. W.; Huang, C. F.; Sheen, Y. C.;
Chang, F. C. Angew. Chem., Int. Ed. 2006, 45, 2248. (b) Lin, C. H.; Cai,
S. X.; Leu, T. S.; Hwang, T. Y.; Lee, H. H. J. Polym. Sci. A 2006, 44,
3454. (c) Ishida, H.; Ohba, S. Polymer 2005, 46, 5588. (d) Burke, W. J. J.
Am. Chem. Soc. 1949, 71, 609.
(2) Biologically active 1,3-benzoxazine derivatives. (a) Scarborough,
R. M.; Venkatraman, M. S.; Zhang, X.; Pandey, A. U.S. Pat. Appl. Publ.
2006. (b) Urbanski, T.; Radzikowski, Cz.; Ledochowski, Z.; Czarnocki,
W. Nature 1956, 178, 1351. (c) Urbanski, T.; Slopek, S. Nature 1951, 168,
562.
(3) (a) Recent review on biologically active 1,4-benzoxazine deriva-
tives: Achari, B.; Mandal, S. B.; Dutta, P. K.; Chowdhury, C. Synlett 2004,
2449. (b) Asymmetric synthesis and biological activity of levofloxacin, a
potent 1,4-benzoxazine-based antibacterial: Mitscher, L. A.; Sharma,
P. N.; Chu, D. T. W.; Shen, L. L.; Pernet, A. G. J. Med. Chem. 1987, 30,
2283.
(4) Gromachevskaya, E. V.; Kvitkowskii, F. V.; Kosulina, T. P.;
Kulnevich, V. G. Chem. Heterocycl. Compd. Chem. 2003, 39, 137.
10.1021/jo062670e CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/01/2007
J. Org. Chem. 2007, 72, 1867-1869
1867