resulting product was purified by HPLC [MeOH–water (1 : 1)]
96-well plate in medium 199 (Invitrogen Corp., USA) contain-
to afford 16 (1.5 mg), identical with the compound derived from
1.
ing 10% fetal calf serum (FCS, Invitrogen Corp.) and washed
with phosphate-buffered saline (PBS, DIA-IATRON Co., Ltd.)
containing 20% FCS. The HUVEC were stimulated with a
solution of lipopolysaccharides (LPS, Sigma) in RPMI 1640
medium (Invitrogen Corp.) containing 10% FCS for 4 h in the
presence of various concentrations of macrosphelides, and then
MTT-labelled HL-60 cells were added and incubated for 40 min
at 37 ЊC in 5% CO2. Unbound cells were gently washed out with
PBS containing 10% FCS, and DMSO was added to lyse the
adherent HL-60 cells. Absorbance at 540 nm was measured
using a microplate reader (Model 450, Bio-Rad).
Formation of the (R)- and (S)-MTPA esters 17a and 17b from
macrosphelide C 7
Using the same procedure as above with macrosphelide E 1,
macrosphelide C 7 (0.7 and 0.8 mg) was treated with (R)-MTPA
(2.0 mg) and (S)-MTPA (2.0 mg) to afford esters 17a (0.9 mg)
and 17b (0.7 mg), respectively.
Ester 17a. Obtained as an amorphous powder; m/z (EI) 542
(Mϩ) [m/z (HREI) Found: Mϩ, 542.1761. C26H29F3O9 requires
M, 542.1763]; δH (CDCl3) 1.30 (3H, d, J = 6.4 Hz, 17-H3), 1.32
(3H, d, J = 6.6 Hz, 19-H3), 1.37 (3H, d, J = 6.4 Hz, 18-H3), 2.35
(1H, dddd, J = 13.3, 4.7, 3.4, 1.1 Hz, 8-HA), 2.49 (1H, dd, J =
15.2, 8.1 Hz, 2-HA), 2.51 (1H, dtd, J = 13.3, 10.1, 0.9 Hz, 8-HB),
2.61 (1H, dd, J = 15.2, 3.0 Hz, 2-HB), 3.50 (3H, s, OMe), 5.11
(1H, dqd, J = 10.1, 6.4, 4.7 Hz, 9-H), 5.14 (1H, dq, J = 7.6, 6.4
Hz, 15-H), 5.27 (1H, dqd, J = 8.1, 6.4, 3.0 Hz, 3-H), 5.43 (1H,
ddd, J = 7.6, 6.3, 1.1 Hz, 14-H), 5.76 (1H, ddd, J = 15.9, 1.1, 0.9
Hz, 6-H), 5.86 (1H, dd, J = 15.9, 1.1 Hz, 12-H), 6.70 (1H, dd,
J = 15.9, 6.3 Hz, 13-H), 6.82 (1H, ddd, J = 15.9, 10.1, 3.4 Hz,
7-H), 7.42 (3H, m, ArH) and 7.47 (2H, m, ArH).
Acknowledgements
We thank Professor M. Kobayashi (Osaka University) and
Dr K. Kawai (Fuso Pharmaceutical Industries, Ltd.) for their
helpful advice on NMR spectral chemical shifts of acetonides
and cell-adhesion assay, respectively. This work was supported
in part by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Science, Sports and Culture, Japan.
References
1 T. Amagata, M. Doi, T. Ohta, K. Minoura and A. Numata, J. Chem.
Soc., Perkin Trans. 1, 1998, 3585 and references cited therein.
2 T. Amagata, M. Doi, M. Tohgo, K. Minoura and A. Numata,
Chem. Commun., 1999, 1321.
3 C. Iwamoto, K. Minoura, T. Oka, T. Ohta, S. Hagishita and
A. Numata, Tetrahedron, 1999, 55, 14353.
4 A. Numata, M. Iritani, T. Yamada, K. Minoura, E. Matsumura,
T. Yamori and T. Tsuruo, Tetrahedron Lett., 1997, 38, 8215.
5 M. Hayashi, Y.-P. Kim, H. Hiraoka, M. Natori, S. Takamatsu, T.
Kawakubo, R. Masuma, K. Komiyama and S. Omura, J. Antibiot.,
1995, 48, 1435.
6 S. Takamatsu, Y.-P. Kim, M. Hayashi, H. Hiraoka, M. Natori,
K. Komiyama and S. Omura, J. Antibiot., 1996, 49, 95.
7 T. Sunazuka, T. Hirose, Y. Harigaya, S. Takamatsu, M. Hayashi,
K. Komiyama, S. Omura, P. A. Sprengler and A. B. Smith, J. Am.
Chem. Soc., 1997, 119, 10247.
8 S. Takamatsu, H. Hiraoka, Y.-P. Kim, M. Hayashi, M. Natori,
K. Komiyama and S. Omura, J. Antibiot., 1997, 50, 878.
9 A. Fukami, Y. Taniguchi, T. Nakamura, M.-C. Rho, K. Kawaguchi,
M. Hayashi, K. Komiyama and S. Omura, J. Antibiot., 1999, 52,
501.
10 Y. Iigo, T. Takashi, T. Tamatani, M. Miyasaka, T. Higashida,
H. Yagita, K. Okumura and W. Tsukuda, J. Immunol., 1991, 147,
4167.
11 D. Lauri, L. Needham, I. Martin-Padura and E. Dejana, J. Natl.
Cancer Inst., 1991, 83, 1321.
12 T. Yamada, M. Doi and A. Numata, The 50th Annual Meeting of the
Kinki Branch of the Pharmaceutical Society of Japan, Osaka,
October, 2000, Abstract p. 137.
13 H. Oikawa, I. Matsuda, T. Kagawa, A. Ichihara and K. Kohmoto,
Tetrahedron, 1994, 50, 13347.
14 S. Nagumo, I. Umezawa, J. Akiyama and H. Akita, Chem. Pharm.
Bull., 1995, 43, 171.
15 N. Harada, A. Saito, H. Ono, S. Murai, H.-Y. Li, J. Gawronski,
K. Gawronska, T. Sugioka and H. Uda, Enantiomer, 1996, 1, 119.
16 N. Harada, A. Saito, H. Ono, H. Uda, J. Gawronski and
K. Gawronska, The 33rd Symposium on the Chemistry of Natural
Products, Osaka, Japan, October 1991, Symposium Papers, p. 464.
17 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem.
Soc., 1991, 113, 4092.
18 E. Hungerbühler, D. Seebach and D. Wasmuth, Helv. Chim. Acta,
1981, 64, 1467.
19 H. Tsutui and O. Mitsunobu, Tetrahedron Lett., 1984, 25, 2159.
20 P. Schnurrenberger, E. Hungerbühler and D. Seebach, Tetrahedron
Lett., 1984, 25, 2209.
21 I. Miki, N. Ishihara, M. Otoshi and H. Kase, J. Immunol. Methods,
1993, 164, 155.
22 G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal
Structures, University of Gottingen, Gottingen, 1997.
23 G. M. Sheldrick, SHELXL-97, Program for the Refinement of
Crystal Structures from Diffraction Data, University of Gottingen,
Gottingen, 1997.
Ester 17b. Obtained as an amorphous powder; m/z (EI) 542
(Mϩ) [m/z (HREI) Found: Mϩ, 542.1762. C26H29F3O9 requires
M, 542.1763]; δH (CDCl3) 1.16 (3H, d, J = 6.2 Hz, 17-H3), 1.30
(3H, d, J = 6.6 Hz, 19-H3), 1.37 (3H, d, J = 6.4 Hz, 18-H3), 2.33
(1H, dddd, J = 13.3, 4.7, 3.1, 1.2 Hz, 8-HA), 2.47 (1H, dd, J =
15.0, 8.2 Hz, 2-HA), 2.51 (1H, dtd, J = 13.3, 10.0, 1.0 Hz, 8-HB),
2.52 (1H, dd, J = 15.0, 3.0 Hz, 2-HB), 3.52 (3H, s, OMe), 5.09
(1H, dq, J = 7.6, 6.2 Hz, 15-H), 5.14 (1H, dqd, J = 10.0, 6.4, 4.7
Hz, 9-H), 5.26 (1H, dqd, J = 8.2, 6.4, 3.0 Hz, 3-H), 5.41 (1H,
ddd, J = 7.6, 6.3, 1.0 Hz, 14-H), 5.76 (1H, ddd, J = 15.9, 1.2, 1.0
Hz, 6-H), 6.0 (1H, dd, J = 15.9, 1.0 Hz, 12-H), 6.75 (1H, dd, J =
15.9, 6.3 Hz, 13-H), 6.81 (1H, ddd, J = 15.9, 10.0, 3.1 Hz, 7-H),
7.42 (3H, m, ArH) and 7.47 (2H, m, ArH).
X-Ray crystallography of macrosphelide C 7†
Macrosphelide C 7 was crystallized from hexane–CH2Cl2
solution by the vapor diffusion method. Crystal data: C16H22O7,
M = 326.34, orthorhombic, P212121, a = 10.514(2), b =
28.460(2), c = 5.860(2) Å, V = 1753.4(7) Å3, Z = 4, Dx = 1.236
Mg mϪ3, F(000) = 696, µ(Cu-Kα) = 0.817 mmϪ1. Data collec-
tion was performed by a Rigaku AFC5R using graphite-
monochromated radiation (λ = 1.5418 Å). A total of 2473
reflections were collected until θ = 67.63 Å, in which 2185 reflec-
tions were observed [I > 2σ(I )]. The crystal structure was solved
by the direct method using SHELXS-97.22 The structure was
refined by the full matrix least-squares method on F 2 using
SHELXL-97.23 In the structure refinements, non-hydrogen
atoms were refined with anisotropic temperature factors.
Hydrogen atoms were calculated on the geometrically ideal
positions by the ‘ride on’ method, and were included in the
calculation of structure factors with isotropic temperature fac-
tors. In the final stage, R = 0.0437, Rw = 0.1055 and S = 1.060
were obtained.
Cell-adhesion assay
This assay was carried out according to a modification of
Miki’s method using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT)-labeled cells.20 HUVEC (DIA-
IATRON Co., Ltd., Japan) were cultured until confluent in a
p1/b1/b104337b/ for crystallographic files in .cif or other electronic
format.
J. Chem. Soc., Perkin Trans. 1, 2001, 3046–3053
3053