Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC04588C
COMMUNICATION
Journal Name
Alkynes, Patai’s Chemistry of Functional Groups, Wiley: New
York, 2009
Recently, an elegant work on the synthesis of highly
stereodefined alkenes from allenals was developed by Ma’s
group, see: J.-X. Dai, M.-Y. Wang, G.-B. Chai, C.-L. Fu, S. Ma, J.
Am. Chem. Soc. 2016, 138, 2532-2535.
a) H. Zhou, Y.-H. Xu, W.-J. Chung, T.-P. Loh, Angew. Chem. Int.
Ed. 2009, 48, 5355-5357; b) S. Pankajakshan, Y.-H. Xu, J. K.
Cheng, M. T. Low, T.-P. Loh, Angew. Chem. Int. Ed. 2012, 51,
5701-5705; c) C. Feng, T.-P. Loh, Chem. Sci. 2012, 3, 3458-
3462; d) Y.-H. Xu, T. He, Q.-C. Zhang, T.-P. Loh, Chem.
Commun. 2014, 50, 2784-2786.
A
plausible mechanistic pathway of CuCN catalyzed
.
hydrosilylation reaction of propargyl epoxides was depicted as in
5
6
Scheme 6.[15] First,
a [Cu]-Si species I was generated from
silylboronate 2 in the presence of CuCN as catalyst and base as
additive, followed by coordinating with the triple bond of propargyl
epoxide 1 to generate the intermediate II. After addition, an
alkoxycopper species III generated in situ would be protonated by
MeOH to give the desired 2,3-allenol product 3. The released
CuOMe as catalyst (IV) would be involved into next catalytic cycle.
7
8
M. Wang, Z.-L. Liu, X. Zhang, P.-P. Tian, Y.-H. Xu, T.-P. Loh, J.
Am. Chem. Soc. 2015, 137, 14830-14833.
Selective recent examples on the synthsis of complex
molecules using allenols see: a) Y. Jiang, A. B. Diagne, R. J.
Thomson, S. E. Schaus, J. Am. Chem. Soc. 2017, 139, 1998-
2205. b) S. N. Kessler, F. Hundemer, J-E. Bäckvall, ACS Catal.
2016, 6, 7448-7451. c) J. Ye, S. Ma, Org. Chem. Front. 2014, 1,
In conclusion, a copper-catalyzed silylation reaction of propargyl
epoxides was developed. In this work, the multifunctionalized 2,3-
allenols and stereodefined tri- and tetrasubstituted alkenes could
be selectively obtained in good yields under mild reaction
conditions. Moreover, the useful boryl- and silyl-substituted alkenes
could also be achieved via the derivation of 2,3-allenols obtained in
this approach. Therefore, current work provides a simple and
practical method to prepare multifunctionalized 2,3-allenols and
stereodefined alkenes.
1210-1224. d) B. Alcaide, P. Almendros, Acc. Chem. Res. 2014
47, 939-952. e) J. Ye, W. Fan and S. Ma, Chem. – Eur. J. 2013
,
,
19, 716-720. f) D. A. Mundal, K. E. Lutz, R. J. Thomson, J. Am.
Chem. Soc. 2012, 134, 5782−5785 g) J. Ye, S. Li, B. Chen, W.
Fan, J. Kuang, J. Liu, Y. Liu, B. Miao, B. Wan, Y. Wang, X. Xie,
Q. Yu, W. Yuan, S. Ma, Org. Lett. 2012, 14, 1346−1349. And
reference 3g.
T. Sun, C. Deutsch, N. Krause, Org. Biomol. Chem. 2012, 10,
5965-5970.
We gratefully acknowledge the funding support of the National
Natural Science Foundation of China (21672198), the State Key
Laboratory of Elemento-organic Chemistry Nankai University
(201620), the Open Project of Key Laboratory of Organosilicon
Chemistry and Material Technology of Ministry of Education,
Hangzhou Normal University (2017110) and Singapore Ministry of
Education Academic Research Fund (RG111/16) for financial
support.
9
10 J. E. Semple, P. C. Wang, Z. Lysenko, M. M. Joullie, J. Am.
Chem. Soc. 1980, 102, 7505-7510.
11 Selective recent examples on the synthesis of 2,3-allenol
derivatives via SN2′-type reaction of alkynyl oxiranes, see: a) J.
Zhao, K. J. Szabó, Angew. Chem., Int. Ed. 2016, 55, 1502-1506;
b) R.-W. Shen, J.-L. Yang, H.-P. Zhao, Y. Feng, L.-X. Zhang, L.-B.
Han, Chem. Commun. 2016, 52, 11959-11962; c) T. S. N. Zhao,
Y. Yang, T. Lessing, K. J. Szabó, J. Am. Chem. Soc. 2014, 136,
7563-7566; d) T. Miura, M. Shimada, P. d. Mendoza, C.
Deutsch, N. Krause, M. Murakami, J. Org. Chem. 2009, 74,
6050-6054; e) M. Poonoth, N. Krause, Adv. Synth & Catal.
2009, 351, 2305-2309; f) T. Miura, M. Shimada, S.-Y. Ku, T.
Tamai, M. Murakami, Angew. Chem., Int. Ed. 2007, 46, 7101-
Notes and references
1
For selective examples on the application of multi-
substituted alkenes, see: a) R. Tomita, Y. Yasu, T. Koike, M.
Akita, Beilstein J. Org. Chem. 2014, 10, 1099-1106; b) S.-X. Lin,
M.-R. Li, Z.-Y. Dong, F.-S. Liang, J.-P. Zhang, Org. Biomol.
Chem. 2014, 12, 1341-1350; c) Y. Sakaguchi, S. Yamada, T.
Konno, T. Agou, T. Kubota, J. Org. Chem. 2017, 82, 1618-
1631.
7103; g) j. kjellgren, H. Sundén, K. J. Szabó, J. Am. Chem. Soc.
2005, 127, 1787-1796; h) A. Fürstner, M. Méndez, Angew.
Chem., Int. Ed. 2003, 42, 5355-5357. And reference 8f.
2
3
a) R. A. Pilli, M. Da. C. F. de Oliveira, Nat. Prod. Rep. 2000, 17,
12 Examples on copper-catalyzed silylation reactions of
propargyl derivatives see: a) D. J. Vyas, C. K. Hazra, M.
Oestreich, Org. Lett. 2011, 13, 4462-5565; b) C. K. Hazra, M.
Oestreich, Org. Lett. 2012, 14, 4010-4013; c) A. García-Rubia,
J. A. Romero-Revilla, P. Mauleón, R. G. Arrayás, J. C.
Carretero, J. Am. Chem. Soc. 2015, 137, 6857-6865. also see
review papers: d) M. Oestreich, E. Hartmann, M. Mewald,
Chem. Rev. 2013, 113, 402-441; e) E. Hatrmann, M.
Oestreich, Chim. Oggi. 2011, 29, 34-37.
13 a) J. A. Marshall, K. G. Pinney, J. Org. Chem. 1993, 58, 7180-
7184. And reference 11h.
14 a) K. Yamamoto, J. Ohshita, T. Mizumo, M. Kanezashi, T.
Tsuru, Appl. Organometal. Chem. 2017, 31, e3580. b) R.
Boese, D. F. Harvey, M. J. Malaska, K. P. C. Vollhardt, J. Am.
Chem. Soc. 1994, 116, 11153-11154. c) P. J. Garratt, A.
Tsotinis, Tetrahedron Lett. 1988, 29, 1833-1836.
15 a) A. Alexakis, I. Marek, J. F. Normant, J. Am. Chem. Soc. 1990
112, 8042-8047; b) A. Alexakis, I. Marek, P. Mangeney, J. F.
Normant, Tetrahedron 1991, 47, 1677-1696; c) A. Claesson,
L.-I. Olsson, J. Chem. Soc. Chem. Commun. 1979, 524-525;
And reference 13a.
117-127; b) G. R. Bedford, D. N. Richardson, Nature 1966
,
212, 733-734; c) R. R. Gardner, G.-B. Liang, S. H. Gellman, J.
Am. Chem. Soc. 1999, 121, 1806-1816; d) A. Hoffmann-Röder,
N. Krause, Angew. Chem., Int. Ed. 2004, 43, 1196-1216.
Selective review papers on the synthesis of multisubstituted
alkenes, please see: a) J. B. Wang, Stereoselective Alkene
Synthesis, Springer-Verlag Berlin Heidelberg, 2012. Selective
review papers on the synthesis of multisubstituted allenes,
see: b) D. J. Pasto, Tetrahedron 1984, 40, 2805-2827; c) L. K.
Sydnes, Chem. Rev. 2003, 103, 1133-1150; d) N. Krause, A.
Hoffmann-Röder, Tetrahedron 2004, 60, 11671-11694; e) M.
Miesch, Synthesis 2004, 746-752; f) K. M. Brummond, J. E.
Deforrest, Synthesis 2007
, 795-818; g) M. Ogasawara,
Tetrahedron: Asymmetry. 2009, 20, 259-271; h) S. Yu, S. Ma,
Chem. Commun. 2011, 47, 5384-5418; i) R. K. Neff, D. E.
Frantz, ACS Catal. 2014, 4, 519-528.
,
4
a) J. F. Normant, A. Alexakis, Synthesis 1981, 841-870; b) A. G.
Fallis, P. Forgione, Tetrahedron 2001, 57, 5899-5913; c) H.
Shinokubo, K. Oshima, Catal. Surv. Asia. 2003, 7, 39-46; d) A.
B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698-4745; e)
E-i. Negishi, Z.-H. Huang, G.-W. Wang, S. Mohan, C. Wang, H.
Hattori, Acc. Chem. Res. 2008, 41, 1474-1485; f) K. Murakami,
H. Yorimitsu, Beilstein. J. Org. Chem. 2013, 9, 278-302; g) P.
Knochel, Carbometallation of Alkenes and Alkynes, In
Additions to and Substitutions at C-C π-Bonds; B. Trost, I.
Fleming, M. F. Semmelhack, Eds., Compresensive Organic
Synthesis, Vol. 4, Pergamon Press: New York, 1991, pp. 865-
911; h) K. Itami, J-I. Yoshida, Carbomagnesiation Reactions,
In the Chemistry of Organomagnesium Compounds; Z.
Rappoport, I. Marek, Eds., Wiley: Chichester, 2008, pp. 631-
679; i) E. Lorthiois, C. Meyer, Carbozincation of Alkenes and
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins