1),3 and therefore this method was envisioned to be a
potentially useful route for generation of polyhydroxylated
amines such as aminosugars.6 Oxidation of the vinyl group
few isolated examples of reversed regioselectivity in Wacker
oxidations, observed in the presence of C-O or C-N bonds
at the allylic position.12,13 The requisite terminal alkene for
this Wacker oxidation tactic could arise through silicon-
tethered vinyl addition to a chiral 2,3-dihydroxyhydrazone.3
This in turn would be conveniently available from crotonal-
dehyde via Sharpless asymmetric dihydroxylation.14
The synthesis began with the condensation of trans-
crotonaldehyde with dibenzylhydrazine (Scheme 3). Sharp-
less asymmetric dihydroxylation of the resulting (E)-R,â-
unsaturated hydrazone 2 afforded the syn-diol 3 (70% yield,
89% ee by HPLC). Silylation with chlorodimethylvinylsilane
then provided the radical cyclization precursor 4 in 98%
yield.
In the key step, exposure to thiyl radicals generated from
PhSH and azo-bisisobutyronitrile (AIBN) led to radical
cyclization of dibenzylhydrazone 4a. The unstable cyclic
intermediate was then directly treated with fluoride to afford
vinyl adduct 5a in 77% yield (dr 91:9).15 Configurational
assignment of the indicated syn,anti-stereotriad of 5a was
based on analogy with the strong precedents and was
ultimately confirmed through synthesis of a daunosamine
derivative (vide infra). The yield in this transformation
improves on an earlier result with the corresponding diphen-
ylhydrazone (63%, dr 88:12).16 It is also notable that the
would be required to reach such targets, thereby offering an
opportunity to broaden the scope of projected applications
of the radical addition. Here we report the realization of these
goals in a concise and efficient asymmetric synthesis of a
2,3-dideoxy-3-aminosugar from achiral precursors, using
an unusual aldehyde-selective Wacker oxidation as a key
step.
Aminosugars such as daunosamine are found within
oligosaccharides, glycopeptides, and anthracycline antitumor
antibiotics; their importance as synthetic targets stems from
not only their presence within natural products but also their
interesting applications in bioorganic and medicinal chem-
istry.7,8 Typically, these building blocks are prepared in
lengthy sequences from carbohydrates, a strategy which is
inherently limited to those sugar starting materials which are
readily available. We hoped to demonstrate a novel combi-
nation of the Si-tethered radical addition method with
asymmetric catalysis to access L-daunosamine (1)9 as a
prototypical member of this class of targets.10
(8) Importance of daunosamine for DNA binding: Portugal, J.; Cashman,
D. J.; Trent, J. O.; Ferrer-Miralles, N.; Przewloka, T.; Fokt, I.; Priebe, W.;
Chaires, J. B. J. Med. Chem. 2005, 48, 8209-8219.
(9) (a) Arcamone, F.; Franceschi, G.; Orezzi, P.; Babier, W.; Mondelli,
R. J. Am. Chem. Soc. 1964, 86, 5334-5335. (b) Arcamone, F.; Cassinelli,
G.; Orezzi, P.; Franceschi, G.; Mondelli, R. J. Am. Chem. Soc. 1964, 86,
5335-5336.
From the retrosynthetic perspective, the open chain form
of daunosamine (1b, Scheme 2) could be produced by
(10) For recent syntheses of aminosugars, see: (a) Parker, K. A.; Chang,
W. Org. Lett. 2005, 7, 1785-1788. (b) Trost, B. M.; Jiang, C. H.; Hammer,
K. Synthesis 2005, 3335-3345. (c) Parker, K. A.; Chang, W. Org. Lett.
2003, 5, 3891-3893. (d) Avenoza, A.; Busto, J. H.; Corzana, F.; Peregrina,
J. M.; Sucunza, D.; Zurbano, M. M. Tetrahedron: Asymmetry 2003, 14,
1037-1043. (e) Ginesta, X.; Pasto, M.; Pericas, M. A.; Riera, A. Org. Lett.
2003, 5, 3001-3004. (f) Cutchins, W. W.; McDonald, F. E. Org. Lett. 2002,
4, 749-752. (g) Liberek, B.; Dabrowska, A.; Frankowski, R.; Matuszewska,
M.; Smiatacz, Z. Carbohydr. Res. 2002, 337, 1803-1810. (h) Saotome,
C.; Ono, M.; Akita, H. Tetrahedron: Asymmetry 2000, 11, 4137-4151.
(i) Davey, R. M.; Brimble, M. A.; Mcleod, M. D. Tetrahedron Lett. 2000,
41, 5141-5145. (j) Effenberger, F.; Roos, J. Tetrahedron: Asymmetry 2000,
11, 1085-1095. (k) Davies, S. G.; Smyth, G. D.; Chippindale, A. M. J.
Chem. Soc., Perkin Trans. 1 1999, 3089-3104. (l) Szechner, B.; Achma-
towicz, O.; Badowska-Roslonek, K. Pol. J. Chem. 1999, 73, 1133-1141.
(m) Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Bando, T.; Hughes, R.;
Winssinger, N.; Natarajan, S.; Koumbis, A. E. Chem.-Eur. J. 1999, 5,
2648-2667. (n) Daley, L.; Roger, P.; Monneret, C. J. Carbohydr. Chem.
1997, 16, 25-48. (o) Sibi, M.; Lu, J.; Edwards, J. J. Org. Chem. 1997, 62,
5864-5872. Sibi et al. (ref 10o) provide an extensive list of references to
earlier syntheses.
Scheme 2
Wacker oxidation11 at the terminus of the corresponding
allylic amine. The feasibility of this approach rested on a
(11) Reviews: Takacs, J. M.; Jiang, X.-T. Curr. Org. Chem. 2003, 7,
369-396. Tsuji, J. Synthesis 1984, 369-384.
(12) (a) Feringa, B. L. J. Chem. Soc., Chem. Commun. 1986, 909-910.
(b) Kang, S.-K.; Jung, K.-Y.; Chung, J.-U.; Namkoong, E.-Y.; Kim, T.-H.
J. Org. Chem. 1995, 60, 4678-4679. (c) Stragies, R.; Blechert, S. J. Am.
Chem. Soc. 2000, 122, 9584-9591.
(5) For other functionalized radical synthons, see: Friestad, G. K. Org.
Lett. 1999, 1, 1499-1501. Friestad, G. K.; Jiang, T.; Fioroni, G. M.
Tetrahedron: Asymmetry 2003, 14, 2853-2856.
(6) Review: Hauser, F. M.; Ellenberger, S. R. Chem. ReV. 1986, 86,
35-67.
(7) Use of daunosamine as a linkage point in biologically active chimeric
structures: (a) Acton, E. M.; Tong, G. L.; Mosher, C. W.; Wolgemuth, R.
L. J. Med. Chem. 1984, 27, 638-645. (b) Zhang, G.; Fang, L.; Zhu, L.;
Aimiuwu, J. E.; Shen, J.; Cheng, H.; Muller, M. T.; Lee, G. E.; Sun, D.;
Wang, P. G. J. Med. Chem. 2005, 48, 5269-5278. (c) Jeffrey, S. C.;
Nguyen, M. T.; Andreyka, J. B.; Meyer, D. L.; Doronina, S. O.; Senter, P.
D. Bioorg. Med. Chem. Lett. 2006, 16, 358-362. (d) Ciesielska, E.;
Studzian, K.; Wasowska, M.; Oszczapowicz, I.; Szmigiero, L. Cell Biol.
Toxicol. 2005, 21, 139-147.
(13) (a) Hosokawa, T.; Aoki, S.; Takano, M.; Nakahira, T.; Yoshida,
Y.; Murahashi, S.-I. J. Chem. Soc., Chem. Commun. 1991, 1559-1560.
(b) Lai, J.; Shi, X.; Dai, L. J. Org. Chem. 1992, 57, 3485-3487.
(14) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV.
1994, 94, 2483-2547.
(15) The diastereomeric ratio was determined by 1H NMR spectroscopy.
The inseparable mixture was carried through subsequent steps, after which
the minor diastereomer was no longer detected.
(16) The earlier result was complicated by the presence of syn-anti
diastereomers in the diol precursor. See ref 3. Subsequent experiments with
diastereomerically pure diphenylhydrazone resulted in similar yield (65%)
and improved selectivity (dr > 98:2).
778
Org. Lett., Vol. 9, No. 5, 2007