(TPEF) microscopy, high-performance fluorophores must
exhibit both high fluorescence quantum yields (φ) and large
TPA cross-sections (σ2) in the red-NIR range (700-1200
nm), corresponding to the biological optimal window for
reduced photodamage.5 Photostability is also an important
feature to consider for TPEF-based applications.
their TPEF cross-section (σ2φ) in the NIR region, as well as
ensuring suitable photostability.
Our trigonal derivatives are derived from the symmetrical
functionalization of an electron-donating triphenylamine core
with three conjugated branches (Scheme 1) bearing electron-
The optimization of molecular TPA has largely focused
on one-dimensional dipolar6,7 or quadrupolar3,7,8 structures,
and so far little attention has been devoted to the design of
optimized octupolar structures,9 although it has been realized
that increased dimensionality and branched structures10,11
could lead to highly effective multiphoton absorption. In this
perspective, we have investigated a series of novel three-
branched octupolar fluorophores with the aim of optimizing
Scheme 1a
(6) (a) He, G. S.; Yuan, L.; Cheng, N.; Bhawalkar, J. D.; Prasad, P. N.;
Brott, L. L.; Clarson, S. J.; Reinhardt, B. A. J. Opt. Soc. Am. B 1997, 14,
1079-1087. (b) Belfield, K. D.; Hagan, D. J.; Van Stryland, E. W.; Schafer,
K. J.; Negres, R. A. Org. Lett. 1999, 1, 1575-1578. (c) Belfield, K. D.;
Schafer, K. J.; Mourad, W.; Reinhardt, B. A. J. Org. Chem. 2000, 65, 4475-
4481. (d) Abbotto, A.; Beverina, L.; Bozio, R.; Bradamante, S.; Ferrante,
C.; Pagani, G. A.; Signorini, R. AdV. Mater. 2000, 12, 1963-1967. (e)
Antonov, L.; Kamada, K.; Ohta, K.; Kamounah, F. S. Phys. Chem. Chem.
Phys. 2003, 5, 1193-1197.
(7) (a) Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt,
J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998,
10, 1863-1874. (b) Kim, O.-K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He,
G. S.; Guang, S. H.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000,
12, 284-286. (c) Strehmel, B.; Sarker, A. M.; Detert, H. ChemPhysChem
2003, 4, 249-259.
(8) (a) Albota, M.; Beljonne, D.; Bre´das, J.-L.; Ehrlich, J. E.; Fu, J.-Y.;
Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-
Maughon, D.; Perry, J. W.; Ro¨ckel, H.; Rumi, M.; Subramaniam, G.; Webb,
W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653-1656. (b) Ventelon,
L.; Blanchard-Desce, M.; Moreaux, L.; Mertz, J. Chem. Commun. 1999,
2055-2056. (c) Ventelon, L.; Charier, S.; Moreaux, L.; Mertz, J.; Blanchard-
Desce, M. Angew. Chem., Int. Ed. 2001, 40, 2098-2101. (d) Frederiksen,
P. K.; Jørgensen, M.; Ogilby, P. R. J. Am. Chem. Soc. 2001, 123, 1215-
1221. (e) Ventelon, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Synth.
Met. 2002, 127, 17-21. (f) Mongin, O.; Porre`s, L.; Moreaux, L.; Mertz, J.;
Blanchard-Desce, M. Org. Lett. 2002, 4, 719-722. (g) Pond, S. J. K.; Rumi,
M.; Levin, M. D.; Parker, T. C.; Beljonne, D.; Day, M. W.; Bre´das, J.-L.;
Marder, S. R.; Perry, J. W. J. Phys. Chem. A 2002, 106, 11470-11480. (h)
Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani,
G. A.; Pedron, D.; Signorini, R. Org. Lett. 2002, 4, 1495-1498. (i) Yang,
W. J.; Kim, D. Y.; Jeong, M.-Y.; Kim, H. M.; Jeon, S.-J.; Cho, B. R. Chem.
Commun. 2003, 2618-2619. (j) Iwase, Y.; Kamada, K.; Ohta, K.; Kondo,
K. J. Mater. Chem. 2003, 13, 1575-1581.
a Reagents and conditions: (a) P(OEt)3, reflux, 10 h (80-84%);
(b) H2O2, AcOH, reflux, 4 h (77-82%); (c) 4-iodobenzaldehyde,
NaH, THF, rt, 15 h (51-61%); (d) KI (2 equiv), KIO3 (1 equiv),
AcOH, 85 °C, 5 h (88%); (e) HCtCSiMe3, Pd(PPh3)2Cl2, CuI,
toluene/Et3N, 40 °C, 2.5 h (96%); (f) TBAF, R-π-X (1-3, 6, or 7,
3.5 equiv), Pd2dba3, PPh3, CuI, toluene/Et3N, 35 °C (72-89%).
(9) (a) Joshi, M. P.; Swiakiewicz, J.; Xu, F.; Prasad, P. N.; Reinhardt,
B. A.; Kannan, R. Opt. Lett. 1998, 23, 1742-1744. (b) Chung, S.-J.; Kim,
K.-S.; Lin, T.-C.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. J. Phys. Chem.
B 1999, 103, 10741-10745. (c) He, G. S.; Swiatkiewicz, J.; Jiang, Y.;
Prasad, P. N.; Reinhardt, B. A.; Tan, L.-S.; Kannan, R. J. Phys. Chem. A
2000, 104, 4805-4810. (d) Cho, B. R.; Son, K. H.; Sang, H. L.; Song,
Y.-S.; Lee, Y.-K.; Jeon, S.-J.; Choi, J. H.; Lee, H.; Cho, M. J. Am. Chem.
Soc. 2001, 123, 10039-10045. (e) Beljonne, D.; Wenseleers, W.; Zojer,
E.; Shuai, Z.; Vogel, H.; Pond, S. J. K.; Perry, J. W.; Marder, S. R.; Bre´das,
J.-L. AdV. Funct. Mater. 2002, 12, 631-641.
(10) (a) Chung, S.-J.; Lin, T.-C.; Kim, K.-S.; He, G. S.; Swiatkiewicz,
J.; Prasad, P. N.; Baker, G. A.; Bright, F. V. Chem. Mater. 2001, 13, 4071-
4076. (b) Drobizhev, M.; Karotki, A.; Kruk, M.; Mamardashvili, N. Z.;
Rebane, A. Chem. Phys. Lett. 2002, 361, 504-512. (c) Abbotto, A.;
Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.; Pedron,
D.; Signorini, R. Chem. Commun. 2003, 2144-2145. (d) Yoo, J.; Yang, S.
K.; Jeong, M.-Y.; Ahn, H. C.; Jeon, S.-J.; Cho, B. R. Org. Lett. 2003, 5,
645-648. (e) Zhang, B. J.; Jeon, S.-J. Chem. Phys. Lett. 2003, 377, 210-
216. (f) Mongin, O.; Porre`s, L.; Katan, C.; Pons, T.; Mertz, J.; Blanchard-
Desce, M. Tetrahedron Lett. 2003, 44, 8121-8125.
withdrawing (A) end-groups (12-15). Although octupolar
derivatives based on triphenylamine cores have been shown
to lead to high quadratic polarizabilities,12 only a few
examples of such derivatives have been shown to display
large TPA cross-sections,9a-c calling for further engineering
of the basic structures.
To examine the role of octupolar symmetry, we also have
investigated a structurally related analogue bearing only
electron-releasing D peripheral groups (11). Following the
same line of reasoning, we have selected strong acceptor
peripheral groups using, in particular, the triflyl moiety
(compounds 13, 15), a powerful acceptor,13 which has not
been considered yet in molecular engineering of TPA. Rigid
(11) (a) McDonagh, A. M.; Humphrey, M. G.; Samoc, M.; Luther-Davies,
B. Organometallics 1999, 18, 5195-5197. (b) Adronov, A.; Fre´chet, J. M.
J.; He, G. S.; Kim, K.-S.; Chung, S.-J.; Swiatkiewicz, J.; Prasad, P. N.
Chem. Mater. 2000, 12, 2838-2841. (c) Drobizhev, M.; Karotki, A.;
Rebane, A.; Spangler, C. W. Opt. Lett. 2001, 26, 1081-1083. (d) Drobizhev,
M.; Karotki, A.; Dzenis, Y.; Rebane, A.; Suo, Z.; Spangler, C. W. J. Phys.
Chem. B 2003, 107, 7540-7543. (e) Mongin, O.; Brunel, J.; Porre`s, L.;
Blanchard-Desce, M. Tetrahedron Lett. 2003, 44, 2813-2816.
(12) (a) Stadler, S.; Feiner, F.; Bra¨uchle, C.; Brandl, S.; Gompper, R.
Chem. Phys. Lett. 1995, 245, 292-296. (b) Stadler, S.; Bra¨uchle, C.; Brandl,
S.; Gompper, R. Chem. Mater. 1996, 8, 414-417. (c) Lambert, C.; Gaschler,
W.; Schma¨lzlin, E.; Meerholz, K.; Bra¨uchle, C. J. Chem. Soc., Perkin Trans.
2 1999, 577-587. (d) Lambert, C.; Gaschler, W.; Schma¨lzlin, E.; Meerholz,
K.; Bra¨uchle, C. J. Chem. Soc., Perkin Trans. 2 1999, 577-587.
(13) Hammett constants: σp ) 0.96 for SO2CF3 and σp ) 0.72 for SO2Me
(Hansch, C.; Leo, A.; Taft, R. W. Chem. ReV. 1991, 91, 165-195).
48
Org. Lett., Vol. 6, No. 1, 2004