J . Org. Chem. 2002, 67, 301-303
301
Sch em e 1. Ald ola se-Ca ta lyzed Self-Ald oliza tion of
Aceta ld eh yd e
P r olin e-Ca ta lyzed On e-Step Asym m etr ic
Syn th esis of 5-Hyd r oxy-(2E)-h exen a l fr om
Aceta ld eh yd e
Armando Co´rdova, Wolfgang Notz, and
Carlos F. Barbas III*
The Skaggs Institute for Chemical Biology,
The Scripps Research Institute,
10550 North Torrey Pines Road,
La J olla, California 92037
Sch em e 2. P r olin e-Ca ta lyzed Self-Ald ol Rea ction
of Aceta ld eh yd e
carlos@scripps.edu
Received J une 29, 2001
affording the corresponding cross aldol products under
very mild conditions and often with excellent enantio-
selectivities.5,6 However, no aldehydes have been em-
ployed as aldol donors, and we became interested in
whether proline is capable of catalyzing the self-aldol
reaction of acetaldehyde to furnish polyketides in a
manner similar to DERA.
Abstr a ct: For the first time, the L-proline-catalyzed direct
asymmetric self-aldolization of acetaldehyde is described
affording (+)-(5S)-hydroxy-(2E)-hexenal 2 with ee’s ranging
from 57 to 90%. Further transformations of 2 into syntheti-
cally valuable building blocks are presented. A mechanism
for the formation of 2 is proposed.
In an initial experiment, a 4:1 mixture of DMSO/
acetaldehyde (10 mL) was treated with L-proline (35 mg)
as catalyst for 14 h at 23 °C. We observed the formation
of two products, which, after isolation and characteriza-
tion, were determined to be (+)-(5S)-hydroxy-(2E)-hex-
enal 2 and 2,4-hexadienal 3 (Scheme 2).
Triketide 2 was formed in 13% yield (w/w) and 57%
ee, together with 5% of 3. The absolute configuration of
the newly formed stereogenic center of 2 was established
to be S by comparison with its known optical rotation.7a
The formation of 2 is particularly noteworthy since this
transformation can be achieved in a single step by proline
catalysis as compared to the multistep syntheses of (S)-2
reported earlier.7a-c
The aldol reaction constitutes an important transfor-
mation in several biosynthetic pathways, particularly
those involving carbohydrates and polyketides. Whereas
carbohydrates are typically synthesized via a direct aldol
reaction by an aldolase enzyme,1 polyketide scaffolds are
constructed by modular polyketide synthases (PKSs) via
a Claisen condensation of two acyl-CoA units and sub-
sequent reduction of the â-keto moiety to afford the
corresponding â-hydroxy acyl-CoA.2
In 1994, Wong and co-workers described the stereo-
selective synthesis of polyketide precursors in a single
step. In their scheme, 2-deoxyribose-5-phosphate aldolase
(DERA) catalyzed the double-aldol sequence using only
acetaldehyde to afford cyclized trimer 1 (Scheme 1).3
As a complement to natural aldolases, we have devel-
oped catalytic antibodies such as 38C2 and 84G3 that
have a broad scope for aldol as well as mechanistically
related reactions providing products with excellent regio-,
diastereo-, and enantioselectivities.4
Encouraged by this result, we investigated a variety
of solvents and reaction temperatures and found pro-
nounced effects on both the yield and ee of 2 (Table 1).
(4) (a) Wagner, J .; Lerner, R. A.; Barbas, C. F., III. Science 1995,
270, 1797. (b) Bjo¨rnestedt, R.; Zhong, G.; Lerner, R. A.; Barbas, C. F.,
III. J . Am. Chem. Soc. 1996, 118, 11720. (c) Zhong, G.; Hoffmann, T.;
Lerner, R. A.; Danishefsky, S.; Barbas, C. F., III. J . Am. Chem. Soc.
1997, 119, 8131. (d) Barbas, C. F., III.; Heine, A.; Zhong, G.; Hoffmann,
T.; Gramatikova, S.; Bjo¨rnestedt, R.; List, B.; Anderson, J .; Stura, E.
A.; Wilson, I. A.; Lerner, R. A. Science 1997, 278, 2085. (e) Hoffmann,
T.; Zhong, G.; List, B.; Shabat, D.; Anderson, J .; Gramatikova, S.;
Lerner, R. A.; Barbas, C. F., III. J . Am. Chem. Soc. 1998, 120, 2768.
(f) Zhong, G.; Shabat, D.; List, B.; Anderson, J .; Sinha, S. C.; Lerner,
R. A.; Barbas, C. F., III. Angew. Chem., Int. Ed. 1998, 37, 2481. (g)
Sinha, S. C.; Barbas, C. F., III.; Lerner, R. A. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 14603. (h) List, B.; Lerner, R. A.; Barbas, C. F., III.
Org. Lett. 1999, 1, 59. (i) List, B.; Shabat, D.; Zhong, G.; Turner, J .
M.; Li, A.; Bui, T.; Anderson, J .; Lerner, R. A.; Barbas, C. F., III. J .
Am. Chem. Soc. 1999, 121, 7283. (j) Zhong, G.; Lerner, R. A.; Barbas,
C. F., III. Angew. Chem., Int. Ed. 1999, 38, 3738. (k) Tanaka, F.;
Lerner, R. A.; Barbas, C. F., III. J . Am. Chem. Soc. 2000, 4835.
(5) (a) List, B.; Lerner, R. A.; Barbas, C. F., III. J . Am. Chem. Soc.
2000, 122, 2395. (b) Notz, W.; List, B. J . Am. Chem. Soc. 2000, 122,
7386. (c) Bui, T.; Barbas, C. F., III. Tetrahedron Lett. 2000, 41, 6951.
(d) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III. J . Am. Chem.
Soc. 2001, 123, 5260. (e) Hajos, Z. G.; Parrish, D. R. J . Org. Chem.
1974, 39, 1615. (f) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem.,
Int. Ed. Engl. 1971, 10, 496. (g) Agami, C.; Platzer, N.; Sevestre, H.
Bull. Soc. Chim. Fr. 1987, 2, 358.
Yet, to date, when aldehydes were used as donors in
cross- as well as self-aldolizations, these antibodies have
only afforded the corresponding aldol condensation
products.4e Expanding our efforts in this field, we recently
reported the proline-catalyzed direct asymmetric aldol
reaction between simple ketones and various aldehydes
* To whom correspondence should be addressed. Fax: (+1) (858)
784-2583.
(1) For excellent reviews on the use of natural aldolase enzymes,
see: (a) Gijsen, H. J . M.; Qiao, L.; Fitz, W.; Wong, C.-H. Chem. Rev.
1996, 96, 443. (b) Wong, C.-H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto,
T. Angew. Chem., Int. Ed. Engl. 1995, 34, 412. (c) Wong, C.-H.;
Whitesides, G. M. Enzymes in Synthetic Organic Chemistry; Pergamon
Press: Oxford, 1994. (d) Bednarski, M. D. In Comprehensive Organic
Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p
455. (e) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000,
39, 1352. (f) Koeller, K. M.; Wong, C.-H. Nature 2001, 409, 232. (g)
Wymer, N.; Buchanan, L. V.; Hernderson, D.; Mehta, N.; Botting, C.
H.; Pocivavsek, L.; Fierke, C. A.; Toone, E. J .; Naismith, J . H. Structure
2001, 9, 1. (h) Wymer, N.; Toone, E. J . Curr. Opin. Chem. Biol. 2000,
4, 110.
(6) L-Proline and its derivatives also catalyzed asymmetric Mannich-
and Michael-type reactions. See: (a) Betancort, J . M.; Barbas, C. F.,
III. Org. Lett. 2001, 3, 3737. (b) Betancort, J . M.; Sakthivel, K.;
Thayumanavan, R.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42, 4441.
(c) Notz, W.; Sakthivel, K.; Bui, T.; Barbas, C. F., III. Tetrahedron Lett.
2001, 42, 199. (d) List, B. J . Am. Chem. Soc. 2000, 122, 9337.
(2) (a) Khosla, C. J . Org. Chem. 2000, 65, 8127 and references cited
therein. (b) Kinoshita, K.; Williard, P. G.; Khosla, C.; Cane, D. E. J .
Am. Chem. Soc. 2001, 123, 2495. (c) Khosla, C.; Harbury, P. B. Nature
2001, 409, 247.
(3) Gijsen, H. J . M.; Wong, C.-H. J . Am. Chem. Soc. 1994, 116, 8422.
10.1021/jo015881m CCC: $22.00 © 2002 American Chemical Society
Published on Web 12/13/2001