Page 7 of 9
Journal of the American Chemical Society
Panchenko, T.; Pihl, R., ISWI chromatin remodellers
sense nucleosome modifications to determine substrate
preference. Nature 2017, 548 (7669), 607.
protein—polysaccharide conjugate vaccines and
immunological reagents. Vaccine 1996, 14 (3), 190-198.
27.Komander, D.; Rape, M., The ubiquitin code. Annu. Rev.
Biochem. 2012, 81, 203-229.
28.Swatek, K. N.; Komander, D., Ubiquitin modifications.
Cell Res. 2016, 26 (4), 399.
29.Cappadocia, L.; Lima, C. D., Ubiquitin-like protein
conjugation: structures, chemistry, and mechanism.
Chem. Rev. 2017, 118 (3), 889-918.
30.van der Veen, A. G.; Ploegh, H. L., Ubiquitin-like
proteins. Annu. Rev. Biochem. 2012, 81, 323-357.
31.Ekkebus, R.; van Kasteren, S. I.; Kulathu, Y.; Scholten,
A.; Berlin, I.; Geurink, P. P.; de Jong, A.; Goerdayal, S.;
Neefjes, J.; Heck, A. J., On terminal alkynes that can
react with active-site cysteine nucleophiles in proteases.
J. Am. Chem. Soc. 2013, 135 (8), 2867-2870.
32.Pruneda, J. N.; Durkin, C. H.; Geurink, P. P.; Ovaa, H.;
Santhanam, B.; Holden, D. W.; Komander, D., The
molecular basis for ubiquitin and ubiquitin-like
specificities in bacterial effector proteases. Mol. Cell
2016, 63 (2), 261-276.
33.Sommer, S.; Weikart, N. D.; Linne, U.; Mootz, H. D.,
Covalent inhibition of SUMO and ubiquitin-specific
cysteine proteases by an in situ thiol–alkyne addition.
Bioorg. Med. Chem. 2013, 21 (9), 2511-2517.
34.Paudel, P.; Zhang, Q.; Leung, C.; Greenberg, H. C.; Guo,
Y.; Chern, Y.-H.; Dong, A.; Li, Y.; Vedadi, M.; Zhuang,
Z., Crystal structure and activity-based labeling reveal
the mechanisms for linkage-specific substrate
recognition by deubiquitinase USP9X. Proc. Natl. Acad.
Sci. U. S. A. 2019, 116 (15), 7288-7297.
35.Basters, A.; Knobeloch, K. P.; Fritz, G., How USP 18
deals with ISG 15‐modified proteins: structural basis for
the specificity of the protease. FEBS J. 2018, 285 (6),
1024-1029.
1
2
3
4
5
6
7
8
12.Rak, A.; Pylypenko, O.; Durek, T.; Watzke, A.; Kushnir,
S.; Brunsveld, L.; Waldmann, H.; Goody, R. S.;
Alexandrov, K., Structure of Rab GDP-dissociation
inhibitor in complex with prenylated YPT1 GTPase.
Science 2003, 302 (5645), 646-650.
13.Stevens, A. J.; Sekar, G.; Shah, N. H.; Mostafavi, A. Z.;
Cowburn, D.; Muir, T. W., A promiscuous split intein
with expanded protein engineering applications. Proc.
Natl. Acad. Sci. U. S. A. 2017, 114 (32), 8538-8543.
14.Amitai, G.; Callahan, B. P.; Stanger, M. J.; Belfort, G.;
Belfort, M., Modulation of intein activity by its
neighboring extein substrates. Proc. Natl. Acad. Sci. U.
S. A. 2009, 106 (27), 11005-11010.
15.Oeemig, J. S.; Zhou, D.; Kajander, T.; Wlodawer, A.;
Iwaï, H., NMR and crystal structures of the Pyrococcus
horikoshii RadA intein guide a strategy for engineering a
highly efficient and promiscuous intein. J. Mol. Biol.
2012, 421 (1), 85-99.
16.Evans, T. C.; Benner, J.; Xu, M.-Q., The in vitro ligation
of bacterially expressed proteins using an intein from
Methanobacterium thermoautotrophicum. J. Biol. Chem.
1999, 274 (7), 3923-3926.
17.Vila-Perelló, M.; Liu, Z.; Shah, N. H.; Willis, J. A.;
Idoyaga, J.; Muir, T. W., Streamlined expressed protein
ligation using split inteins. J. Am. Chem. Soc. 2012, 135
(1), 286-292.
18.Henager, S. H.; Chu, N.; Chen, Z.; Bolduc, D.; Dempsey,
D. R.; Hwang, Y.; Wells, J.; Cole, P. A., Enzyme-
catalyzed expressed protein ligation. Nat. Method. 2016,
13 (11), 925.
19.Okamoto, R.; Morooka, K.; Kajihara, Y., A Synthetic
Approach to a Peptide α‐Thioester from an Unprotected
Peptide through Cleavage and Activation of a Specific
Peptide Bond by N‐Acetylguanidine. Angew. Chem. Int.
Ed. Engl. 2012, 51 (1), 191-196.
20.Miyajima, R.; Tsuda, Y.; Inokuma, T.; Shigenaga, A.;
Imanishi, M.; Futaki, S.; Otaka, A., Preparation of
peptide thioesters from naturally occurring sequences
using reaction sequence consisting of regioselective S‐
cyanylation and hydrazinolysis. Peptide Science 2016,
106 (4), 531-546.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
36.Catic, A.; Fiebiger, E.; Korbel, G. A.; Blom, D.; Galardy,
P. J.; Ploegh, H. L., Screen for ISG15-crossreactive
deubiquitinases. PLoS One 2007, 2 (7), e679.
37.Dang, L. C.; Melandri, F. D.; Stein, R. L., Kinetic and
mechanistic studies on the hydrolysis of ubiquitin C-
terminal 7-amido-4-methylcoumarin by deubiquitinating
enzymes. Biochemistry 1998, 37 (7), 1868-1879.
38.Basu, A.; Rose, K. L.; Zhang, J.; Beavis, R. C.;
Ueberheide, B.; Garcia, B. A.; Chait, B.; Zhao, Y.; Hunt,
D. F.; Segal, E., Proteome-wide prediction of acetylation
substrates. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (33),
13785-13790.
39.Frouws, T. D.; Barth, P. D.; Richmond, T. J., Site-
Specific disulfide crosslinked nucleosomes with
enhanced stability. J. Mol. Biol. 2018, 430 (1), 45-57.
40.Matsumoto, S.; Cavadini, S.; Bunker, R. D.; Grand, R.
S.; Potenza, A.; Rabl, J.; Yamamoto, J.; Schenk, A. D.;
Schübeler, D.; Iwai, S., DNA damage detection in
nucleosomes involves DNA register shifting. Nature
2019, 571 (7763), 79-84.
21.Rimington, C., The relation between cystine yield and
total sulphur in wool. Biochem. J. 1929, 23 (1), 41.
22.Farnworth, A.; Speakman, J., Reactivity of the Sulphur
Linkage in Wool. Nature 1949, 163 (4151), 798.
23.Wood, J. L.; Catsimpoolas, N., Cleavage of the peptide
bond at the cystine amino group by the action of cyanide.
J. Biol. Chem. 1963, 238 (8), PC2887-PC2888.
24.Catsimpoolas, N.; Wood, J. L., Specific cleavage of
cystine peptides by cyanide. J. Biol. Chem. 1966, 241 (8),
1790-1796.
25.Patchornik, A.; Degani, Y.; Neumann, H., Selective
cyanylation of sulfhydryl groups. J. Am. Chem. Soc.
1970, 92 (23), 6969-6971.
41.Nowotny, M.; Gaidamakov, S. A.; Crouch, R. J.; Yang,
W., Crystal structures of RNase H bound to an
RNA/DNA hybrid: substrate specificity and metal-
dependent catalysis. Cell 2005, 121 (7), 1005-1016.
42.Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L.,
Chemical synthesis of proteins using peptide hydrazides
26.Lees, A.; Nelson, B. L.; Mond, J. J., Activation of soluble
polysaccharides
with
1-cyano-4-
dimethylaminopyridinium tetrafluoroborate for use in
7
ACS Paragon Plus Environment