Page 9 of 12
Journal of the American Chemical Society
(10) Mitsumi, M.; Ezaki, K.; Komatsu, Y.; Toriumi, K.; Miyatou,
Experimental conditions of synthesis, X-ray structural determina-
T.; Mizuno, M.; Azuma, N.; Miyazaki, Y.; Nakano, M.; Kitagawa, Y.;
Hanashima, T.; Kiyanagi, R.; Ohhara, T.; Nakasuji, K., Proton Order-
tion and UV-vis spectra measurement, structural parameters of the
crystal structure and DFT calculations of all compounds, UV-vis
spectra and time-resolved IR spectra of [1Cl], and the crystal struc-
ture, magnetic property, and Mössbauer spectra of [1OMe]. X-ray
crystallographic data for [1Cl] at 350, 180, and 25 K before and
after irradiation of 532 nm light and for [1OMe] at 150 and 300 K
(CIF).
1
2
3
4
5
6
7
8
Disorder Phenomena in
a
Hydrogen-Bonded Rhodium-5-
Semiquinone Complex: A Possible Dielectric Response Mechanism.
Chem. Eur. J. 2015, 21, 9682-96.
(11) Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Markevicius, A.;
Sola, J., Pick-up, transport and release of a molecular cargo using a
small-molecule robotic arm. Nat. Chem. 2016, 8, 138-143.
(12) Li, K.; Li, Y.; Tao, J.; Liu, L.; Wang, L.; Hou, H.; Tong, A.,
Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a
Reversible Photochromic Material both in Solution and in Solid Matrix.
Sci. Rep. 2015, 5, 14467.
(13) Ray, D.; Foy, J. T.; Hughes, R. P.; Aprahamian, I., A
switching cascade of hydrazone-based rotary switches through
coordination-coupled proton relays. Nat. Chem. 2012, 4, 757.
(14) Su, X.; Aprahamian, I., Hydrazone-based switches, metallo-
assemblies and sensors. Chem. Soc. Rev. 2014, 43, 1963-1981.
(15) Rosario-Amorin, D.; Dechambenoit, P.; Bentaleb, A.;
Rouzières, M.; Mathonière, C.; Clérac, R., Multistability at Room
Temperature in a Bent-Shaped Spin-Crossover Complex Decorated
with Long Alkyl Chains. J. Am. Chem. Soc. 2018, 140, 98-101.
(16) Romero-Morcillo, T.; Seredyuk, M.; Muñoz, M. C.; Real, J.
A., Meltable Spin Transition Molecular Materials with Tunable Tc and
Hysteresis Loop Width. Angew. Chem. Int. Ed. 2015, 54, 14777-14781.
(17) Chen, X.-Q.; Cai, Y.-D.; Jiang, W.; Peng, G.; Fang, J.-K.;
Liu, J.-L.; Tong, M.-L.; Bao, X., A Multi-Stimuli-Responsive Fe(II)
SCO Complex Based on an Acylhydrazone Ligand. Inorg. Chem. 2019,
58, 999-1002.
AUTHOR INFORMATION
9
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
* sato@cm.kyushu-u.ac.jp
ACKNOWLEDGMENT
We thank for the support by MEXT KAKENHI (Grant Numbers
JP17H01197,
JP16H00849,
JP17K05761,
JP24109014,
JP15K13710, JP17H01200, JP17H03117, JP16K05421 and
JP17H06928), by the MEXT Project of “Integrated Research Con-
sortium on Chemical Sciences”, “Elements Strategy Initiative to
Form Core Research Center”, JST-CREST “Innovative Catalysts”
JPMJCR15P5, and by the Cooperative Research Program of “Net-
work Joint Research Center for Materials and Devices”. The syn-
chrotron radiation experiments were performed at the BL02B1 of
SPring-8 with the approval of the Japan Synchrotron Radiation Re-
search Institute (JASRI) (Proposal No. 2017A1364, 2017B1285,
2018A1213 and 2018B1259). This work was partly supported by
Nanotechnology Platform Program (Molecule and Material Syn-
thesis) of MEXT, Japan. The computation was carried out using the
computer facilities at Research Institute for Information Technol-
ogy, Kyushu University.
(18) Yuan, J.; Wu, S.-Q.; Liu, M.-J.; Sato, O.; Kou, H.-Z.,
Rhodamine 6G-Labeled Pyridyl Aroylhydrazone Fe(II) Complex
Exhibiting Synergetic Spin Crossover and Fluorescence. J. Am. Chem.
Soc. 2018, 140, 9426-9433.
(19) Zhang, L.; Wang, J.-J.; Xu, G.-C.; Li, J.; Jia, D.-Z.; Gao, S.,
Tuning size and magnetic thermal hysteresis in a new near room
temperature spin crossover compound. Dalton Trans. 2013, 42, 8205-
8208.
REFERENCES
(1)
Li, A.-L.; Gao, Q.; Xu, J.; Bu, X.-H., Proton-conductive
metal-organic frameworks: Recent advances and perspectives. Coord.
Chem. Rev. 2017, 344, 54-82.
(20) Zhang, L.; Xu, G.-C.; Wang, Z.-M.; Gao, S., Two
Mononuclear Iron(II) Spin-Crossover Complexes with
a N4O2
(2)
Hemmatian, Z.; Keene, S.; Josberger, E.; Miyake, T.;
Coordination Sphere. Eur. J. Inorg. Chem. 2013, 2013, 1043-1048.
(21) Zhang, L.; Xu, G.-C.; Xu, H.-B.; Mereacre, V.; Wang, Z.-
M.; Powell, A. K.; Gao, S., Synthesis, magnetic and photomagnetic
study of new iron(II) spin-crossover complexes with N4O2 coordination
sphere. Dalton Trans. 2010, 39, 4856-4868.
(22) Zhang, L.; Xu, G.-C.; Xu, H.-B.; Zhang, T.; Wang, Z.-M.;
Yuan, M.; Gao, S., Abrupt spin transition around room temperature and
light induced properties in FeII complexes with N4O2 coordination
sphere. Chem. Commun. 2010, 46, 2554-2556.
(23) Nakanishi, T.; Sato, O., Synthesis, Structure, and Magnetic
Properties of New Spin Crossover Fe(II) Complexes Forming Short
Hydrogen Bonds with Substituted Dicarboxylic Acids. Crystals 2016,
6, 8.
(24) Kuriakose, D.; Aravindakshan, A. A.; Kurup, M. R. P.,
Synthesis, spectroscopic, crystal structures and photoluminescence
studies of cadmium(II) complexes derived from di-2-pyridyl ketone
benzoylhydrazone: Crystal structure of a rare eight coordinate
cadmium(II) complex. Polyhedron 2017, 127, 84-96.
(25) Reena, T. A.; Seena, E. B.; Prathapachandra Kurup, M. R.,
Zinc(II) complexes derived from di-2-pyridyl ketone N4-phenyl-3-
semicarbazone: Crystal structures and spectral studies. Polyhedron
2008, 27, 3461-3466.
(26) Bakir, M.; Conry, R., Synthesis, spectroscopic and X-ray
crystallographic properties of manganese compounds of keto- and
enol-coordinated di-2-pyridyl ketone benzoyl hydrazone (dpkbh).
Reactions of Mn(CO)5Br with dpkbh. J. Coord. Chem. 2016, 69, 1244-
1257.
(27) Kyriakidis, C. E.; Christidis, P. C.; Rentzeperis, P. J.;
Tossidis, I. A., Crystal structure and spectra of dichloro-o-
bromobenzoyldi-(2-pyridyl)ketonohydrazono zinc(II). Z. Kristallogr.
1990, 193, 261-269.
Arboleda, C.; Soto-Rodríguez, J.; Baneyx, F.; Rolandi, M., Electronic
control of H+ current in a bioprotonic device with Gramicidin A and
Alamethicin. Nat. Commu. 2016, 7, 12981.
(3)
Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.;
Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.;
Meyer, T. J., Proton-Coupled Electron Transfer. Chem. Rev. 2012, 112,
4016-4093.
(4)
Tokura, Y.; Seki, S., Multiferroics with Spiral Spin Orders.
Adv. Mater. 2010, 22, 1554-1565.
(5)
Ishiwata, S.; Taguchi, Y.; Murakawa, H.; Onose, Y.; Tokura,
Y., Low-Magnetic-Field Control of Electric Polarization Vector in a
Helimagnet. Science 2008, 319, 1643-1646.
(6)
Reece, S. Y.; Nocera, D. G., Proton-Coupled Electron
Transfer in Biology: Results from Synergistic Studies in Natural and
Model Systems. Annu. Rev. Biochem. 2009, 78, 673-699.
(7)
Nakasuji, K.; Sugiura, K.; Kitagawa, T.; Toyoda, J.;
Okamoto, H.; Okaniwa, K.; Mitani, T.; Yamamoto, H.; Murata, I.,
Exploration of new cooperative proton-electron transfer (PET)
systems: first example of extended conjugated quinhydrones, 1,5-
dihalo-2,6-naphthoquinhydrones. J. Am. Chem. Soc. 1991, 113, 1862-
1864.
(8)
Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.;
Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y., Above-room-
temperature ferroelectricity in a single-component molecular crystal.
Nature 2010, 463, 789-92.
(9)
Ueda, A.; Yamada, S.; Isono, T.; Kamo, H.; Nakao, A.;
Kumai, R.; Nakao, H.; Murakami, Y.; Yamamoto, K.; Nishio, Y.; Mori,
H., Hydrogen-bond-dynamics-based switching of conductivity and
magnetism: a phase transition caused by deuterium and electron
transfer in a hydrogen-bonded purely organic conductor crystal. J. Am.
Chem. Soc. 2014, 136, 12184-92.
ACS Paragon Plus Environment