Schiff-Base Alkoxytitanium Complexes
FULL PAPER
of one half of a molecule with the central titanium atom residing
3
CDCl3): δ = 0.38 [d, JHH = 12 Hz, 12 H, OCH(CH3)2], 2.21 (s, 3
3
H, p-CH3) 2.38 (s, 6 H, o-CH3), 3.45 [sept, JHH = 9 Hz, 2 H, on a twofold rotation axis, in addition to half of a toluene molecule
3
3
4
OCH(CH3)2], 6.52 (ddd, JHH = 7.6 Hz, JHH = 6.8 Hz, JHH
=
proximate to a crystallographic inversion centre. The methyl group
0.9 Hz, 2 H, CHarom) 6.59–6.62 (m, 2 H, CHarom), 6.83 (s, 4 H, in the solvent was disordered in a 1:1 ratio by virtue of straddling
3
4
CHarom), 7.08 (dd, JHH = 7.8 Hz, JHH = 1.8 Hz, 2 H, CHarom
)
this inversion centre. One full toluene molecule was also seen to be
present in the structure of 2j. In addition, one of the isopropyl
groups exhibited disorder whereby C(90)–(92) were disordered in a
1:1 ratio with C(90Ј)–(92Ј). Similarly, the asymmetric unit in 2k
was also observed to contain a solvent molecule (toluene) evenly
disordered over two sites. In particular, C(101)–(106) exhibited 1:1
disorder with C(201)–C(206). Both partial rings were refined as
rigid hexagons. Disordered toluene methyl groups were not in-
cluded in the model. Moreover, one tert-butyl substituent was also
found to be disordered in a 70:30 ratio, whereby C(95A)–(96C)
were refined at 70% occupancy and C(95D)–(95F) were refined at
30% occupancy. CCDC-239547 to -239552 contain the supplemen-
tary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
3
3
4
7.22 (ddd, JHH = 8.4 Hz, JHH = 7.2 Hz, JHH = 1.8 Hz, 2 H,
CHarom), 7.88 [s, 2 H, C(H)=N] ppm. 13C NMR (75.5 MHz, 23 °C,
CDCl3): δ = 19.8, 21.1, 24.9, 77.7, 115.7, 119.9, 121.7, 129.0, 131.5,
134.6, 135.4, 135.7, 151.7, 167.8, 169.2 ppm.
[Ti(OiPr)2{η2-OC6H4C(H)NC6[CH(CH3)2]2H3}2] (2h): Yield: 0.6 g
(83%). C44H58N2O4Ti (726.4): calcd. C 72.73, H 7.99, N 3.86;
found C 72.30, H 8.01, N 3.76. 1H NMR (300 MHz, 23 °C,
CDCl3): δ = 0.51 [br. s, 12 H, OCH(CH3)2], 1.25 [br. s, 24 H,
CCCH(CH3)2], 3.77 [sept, JHH = 7 Hz, 2 H, OCH(CH3)2], 3.87
[sept, JHH = 9.2 Hz, 2 H, CCH(CH3)2], 6.62–6.65 (m, 4 H,
CHarom), 7.19–7.27 (m, 8 H, CHarom), 7.35–7.39 (m, 2 H, CHarom),
8.05 [s, 2 H, C(H)=N] ppm. 13C NMR (75.5 MHz, 23 °C, CDCl3):
δ = 25.29, 27.46, 27.48, 77.8, 115.61, 120.0, 124.17, 124.17, 126.92,
134.9, 136.1, 142.2, 152.2, 167.5, 169 ppm.
3
3
[Ti(OiPr)2{η2-OC6H4C(H)NCH(Ph)2}2] (2i): Yield: 0.49 g (66%).
C46H46N2O4Ti (738.3): calcd. C 74.79, H 6.23, N 3.79; found C
74.70, H 6.20, N 3.78. 1H NMR (300 MHz, 23 °C, CDCl3): δ = 0.92
[d, JHH = 6.4 Hz, 12 H, OCH(CH3)2], 4.5 [sept, JHH = 8.9 Hz, 2
H, OCH(CH3)2], 6.57–6.60 (m, 2 H, CHarom), 6.72–6.73 (m, 2 H,
CHarom), 6.82–6.84 (m, 4 H, CHarom), 7.02–7.27 (m, 20 H, CHarom),
7.79 [s, 2 H, C(H)=N] ppm. 13C NMR (75.5 MHz, 23 °C, CDCl3):
δ = 24.3, 70.2, 77.8, 115.9, 118.2, 121.3, 125.8, 126.9, 127.7, 128.1,
133.1, 139.9, 162.6, 166.3 ppm.
Acknowledgments
3
3
We thank Johnson Matthey Catalysts Ltd. (A. L. J., M. G. D.,
M. D. L.) and the the EPSRC (M. G. D.) for support.
[1] H. G. Alt, E. H. Licht, A. I. Licht, K. J. Schneider, Coord.
Chem. Rev. 2005, 250, 2.
[2] G. Erker, G. Kehr, R. Frohlich, Coord. Chem. Rev. 2006, 250,
36.
[3] C. Janiak, Coord. Chem. Rev. 2006, 250, 66.
[4] M. Bochmann, J. Organomet. Chem. 2004, 689, 3982.
[5] W. Kaminsky, Adv. Catal. 2001, 46, 89.
[6] A. Vanderlinden, C. J. Schaverien, N. Meijnoom, C. Ganter,
A. G. Orpen, J. Am. Chem. Soc. 1995, 117, 3008.
[7] R. D. J. Froese, D. Musaev, G. T. Matsubara, K. Morokuma,
J. Am. Chem. Soc. 1997, 119, 7190.
[8] R. D. J. Froese, D. Musaev, G. K. Morokuma, Organometallics
1999, 18, 373.
[9] Y. Nakayama, K. Watanabe, N. Ueyama, A. Nakamura, A.
Harada, J. Okuda, Organometallics 2000, 19, 2498.
[10] L. Matilainen, M. Klinga, M. Leskelä, J. Chem. Soc., Dalton
Trans. 1996, 219.
[11] E. B. Tjaden, D. C. Swenson, R. F. Jordan, Organometallics
1995, 14, 371.
[12] E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, J. Chem.
Soc., Dalton Trans. 1992, 367.
[13] C. Floriani, Polyhedron 1989, 8, 1717.
[14] R. Fleischer, H. Wunderlich, M. Braun, Eur. J. Org. Chem.
1998, 1063.
[15] H. Chen, P. S. White, R. M. Gagné, Organometallics 1998, 17,
5358.
[Ti(OiPr)2{η2-OC6H4C(H)N[C6H2(Ph)3]}{η1-OC6H4C(H)NC6H2-
(Ph)3}] (2j): Yield: 0.59 g (58%). C68H58N2O4Ti (1014.4): calcd. C
80.47, H 5.71, N 2.76; found C 80.40, H 5.73, N 2.73. 1H NMR
3
(300 MHz, 23 °C, CDCl3): δ = 0.69 [d, JHH = 6.4 Hz, 12 H,
3
OCH(CH3)2], 4.14 [sept, JHH = 9 Hz, 2 H, OCH(CH3)2], 6.37–
7.50 (m, 42 H, CHarom), 8.29 [s, 2 H, C(H)=N] ppm. 13C NMR
(75.5 MHz, 23 °C, CDCl3): δ = 25.6 80.6, 119.1, 120.2, 125.7, 127.2,
127.4, 127.5, 127.7, 128.3, 128.5, 129.3, 130.3, 130.5, 135.3, 138.3,
140.1, 141.1, 150.2, 164.3, 165.9 ppm.
[Ti(OiPr)3η1-OC6H4C(H)N{C6H2(tBu)3}]2 (2k): Yield: 0.48 g
(82%, based on Ti). C68H110N2O8Ti2 (1178.7): calcd. C 69.27, H
1
9.34, N 2.38; found C 69.02, H 9.18, N 2.39. H NMR (300 MHz,
3
23 °C, CDCl3): δ = 0.99 [d, JHH = 9 Hz, 36 H, OCH(CH3)2], 1.24
3
[s, 18 H, C(CH3)3], 1.27 [s, 36 H, C(CH3)3], 4.43 [sept, JHH
=
6.3 Hz, 6 H, OCH(CH3)2], 6.8–6.94 (m, 4 H, CHarom), 7.11–7.38
(m, 4 H, CHarom), 7.96–8.14 (m, 4 H, CHarom), 8.56 [s, 2 H,
C(H)=N] ppm. 13C NMR (75.5 MHz, 23 °C, CDCl3): δ = 26.6,
31.9, 32.5, 35.0, 36.4, 77.6, 120.9, 121.9, 122.5, 127.8, 132.6, 138.9,
141.2, 151.9, 158.4, 165.1, 168.2 ppm.
X-ray Crystallographic Study: Crystallographic data for com-
pounds 2c, 2d, 2e, 2h, 2j and 2k are summarised in Table 5. All
data collections were carried out with a Nonius KappaCCD dif-
fractometer. Structure solution and refinement were performed
using SHELX86[52] and SHELX97[53] software, respectively. Exper-
imental data relating to all structure determinations are summa-
rised in Table 5. Full-matrix anisotropic refinement was im-
plemented in the final least-squares cycles throughout. All data
were corrected for Lorentz and polarisation and, with the excep-
tions of 2d, 2e and 2j, for extinction effects. Hydrogen atoms were
included at calculated positions throughout. In 2d, one of the
phenyl groups was seen to exhibit positional disorder. In particular,
C(1)–C(6) were found to be disordered in a 1:1 ratio with C(1A)–
C(6A). All carbon–carbon distances therein were refined subject to
rigid-bond restraints. In complex 2h, the asymmetric unit consisted
[16] P. R. Woodman, I. J. Munslow, P. B. Hitchcock, P. J. Scott, J.
Chem. Soc., Dalton Trans. 1999, 4069.
[17] P. R. Woodman, N. W. Alcock, I. J. Munslow, C. J. Sanders,
P. J. Scott, J. Chem. Soc., Dalton Trans. 2000, 3340.
[18] J. P. Corden, W. Errington, P. Moore, M. G. H. Wallbridge,
Chem. Commun. 1999, 323.
[19] X. Bei, D. C. Swenson, R. F. Jordan, Organometallics 1997, 16,
3282.
[20] T. Tsukahara, D. C. Swenson, R. F. Jordan, Organometallics
1997, 16, 3303.
[21] I. Kim, Y. Mishihara, R. F. Jordan, R. D. Rogers, A. L. Rhein-
gold, G. P. Yap, Organometallics 1997, 16, 3314.
[22] M. C. W. Chan, S. C. F. Kui, J. M. Cole, G. J. McIntyre, S.
Matsui, N. Zhu, K.-H. Tam, Chem. Eur. J. 2006, 12, 2607.
[23] S. Matsui, M. Mitani, J. Saito, Y. Tohi, M. Makio, N. Matsu-
kawa, Y. Takagi, K. Tsuru, M. Nitabaru, T. Nakano, H.
Eur. J. Inorg. Chem. 2006, 3088–3098
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3097