Organic Letters
Letter
(13) A similar NMR yield (75% after 23 h) was observed using
NaO-t-Am (2 equiv) as base in 1,2-dimethoxyethane as solvent.
However, this procedure exhibited poor reproducibility when
compared to the optimized reaction conditions (Table 1, entry 8).
(14) (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T.
J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062−5085. (b) Ruiz-
Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564−12649.
(c) Haas, D.; Hammann, J. M.; Greiner, R.; Knochel, P. ACS Catal.
2016, 6, 1540−1552.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the School of Chemistry, Cardiff
University, for generous support, the EPSRC Doctoral
Training Grant for a part-funded Ph.D. studentship (J.N.A.,
EP/M5063X/1) and the EPSRC UK National Mass
Spectrometry Facility at Swansea University.
REFERENCES
■
(15) (a) Kimber, M. C. Org. Lett. 2010, 12, 1128−1131. (b) Hill, A.
W.; Elsegood, M. R. J.; Kimber, M. C. J. Org. Chem. 2010, 75, 5406−
5409.
(1) For selected reviews on allenes, see: (a) Schuster, H. E.;
Coppola, G. M. Allenes in Organic Synthesis; John Wiley and Sons:
New York, 1984. (b) Sainsbury, M. Rodd’s Chemistry of Carbon
Compounds; Elsevier: Oxford, 1991; pp 115−155. (c) Brummond, K.
M.; Kent, J. L. Tetrahedron 2000, 56, 3263−3283. (d) Krause, N.;
Hashmi, A. S. K. Modern Allene Chemistry; Wiley-VCH Verlag:
Weinheim, 2004; Vols. 1 and 2. (e) Ma, S. Chem. Rev. 2005, 105,
2829−2872.
(2) For selected reviews on allenamides, see: (a) Wei, L.-I.; Xiong,
H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773−782. (b) Standen, P.
E.; Kimber, M. C. Curr. Opin. Drug Discovery Devel. 2010, 13, 645−
657. (c) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev.
2013, 113, 4862−4904. (d) Manoni, E.; Bandini, M. Eur. J. Org.
Chem. 2016, 2016, 3135−3142.
(16) (a) Luo, K.; Meng, L.; Zhang, Y.; Zhang, X.; Wang, L. Adv.
Synth. Catal. 2013, 355, 765−780. (b) Nitelet, A.; Wouters, J.; Dewez,
D. F.; Evano, G. Org. Lett. 2017, 19, 6276−6279.
(17) (a) Kimura, M.; Horino, Y.; Wakamiya, Y.; Okajima, T.;
Tamaru, Y. J. Am. Chem. Soc. 1997, 119, 10869−10870. (b) Horino,
Y.; Kimura, M.; Tanaka, S.; Okajima, T.; Tamaru, Y. Chem. - Eur. J.
2003, 9, 2419−2438.
(18) (a) Banert, K.; Groth, S.; Huchstadt, H.; Lehmann, J.; Schlott,
̈
̈
J.; Vrobel, K. Synthesis 2002, 1423−1433. (b) Bacci, J. P.; Greenman,
K. L.; Van Vranken, D. L. J. Org. Chem. 2003, 68, 4955−4958.
(c) Reference 5b.
(3) Saalfrank, R. W.; Lurz, C. J. In Methoden Der Organischen Chemie
(Houben-Weyl); Kropf, H., Schaumann, E., Eds.; Georg Thieme
Verlag: Stuttgart, 1993; pp 3093−3102.
(4) Dickinson, W. B.; Lang, P. C. Tetrahedron Lett. 1967, 8, 3035−
3040.
(5) (a) Corbel, B.; Paugam, J.-P.; Dreux, M.; Savignac, P.
Tetrahedron Lett. 1976, 17, 835−838. (b) Danowitz, A. M.; Taylor,
C. E.; Shrikian, T. M.; Mapp, A. K. Org. Lett. 2010, 12, 2574−2577.
(c) Yin, G.; Zhu, Y.; Zhang, L.; Lu, P.; Wang, Y. Org. Lett. 2011, 13,
940−943.
̈
(6) (a) van Boxtel, L. J.; Korbe, S.; Noltemeyer, M.; de Meijere, A.
Eur. J. Org. Chem. 2001, 2001, 2283−2292. (b) Kozawa, Y.; Mori, M.
Tetrahedron Lett. 2002, 43, 1499−1502. (c) Persson, A. K. Å.;
̈
Johnston, E. V.; Backvall, J.-E. Org. Lett. 2009, 11, 3814−3817.
(d) Zhu, Y.; Yin, G.; Hong, D.; Lu, P.; Wang, Y. Org. Lett. 2011, 13,
1024−1027.
(7) (a) Balasubramanian, K. K.; Venugopalan, B. Tetrahedron Lett.
1974, 15, 2643−2644. (b) Galons, H.; Bergerat, I.; Combet-Farnoux,
C.; Miocque, M.; Decodts, G.; Bram, G. J. Chem. Soc., Chem. Commun.
1985, 1730−1731.
(8) (a) Ayres, J. N.; Ling, K. B.; Morrill, L. C. Org. Lett. 2016, 18,
̈
5528−5531. (b) Ayres, J. N.; Ashford, M. W.; Stockl, Y.; Prudhomme,
V.; Ling, K. B.; Platts, J. A.; Morrill, L. C. Org. Lett. 2017, 19, 3835−
3838.
(9) For selected reviews that detail the biological relevance,
synthesis, and reactivity of cyanamides, see: (a) Larraufie, M.-H.;
̂
Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E.
Synthesis 2012, 44, 1279−1292. (b) Prabhath, M. R. R.; Williams, L.;
Bhat, S. V.; Sharma, P. Molecules 2017, 22, 615−642.
(10) For pioneering studies, see: (a) Wallach, O. Ber. Dtsch. Chem.
Ges. 1899, 32, 1872−1875. (b) Braun, J. v. Ber. Dtsch. Chem. Ges.
̈
1900, 33, 1438−1452. (c) Scholl, R.; Norr, W. Ber. Dtsch. Chem. Ges.
1900, 33, 1555 For selected recent applications in synthesis, see:.
(d) Goldberg, K.; Clarke, D. S.; Scott, J. S. Tetrahedron Lett. 2014, 55,
4433−4436. (e) Hashimoto, T.; Ishii, S.; Yano, R.; Miura, H.; Sakata,
K.; Takeuchi, R. Adv. Synth. Catal. 2015, 357, 3901−3916.
(11) For pioneering early examples, see: (a) Kurzer, F. J. Chem. Soc.
1949, 1034−1038. (b) Kurzer, F. J. Chem. Soc. 1949, 3029−3033.
(c) Anbarasan, P.; Neumann, H.; Beller, M. Chem. - Eur. J. 2011, 17,
4217−4222. (d) Anbarasan, P.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2011, 50, 519−522. (e) Yang, Y.; Zhang, Y.; Wang, J.
Org. Lett. 2011, 13, 5608−5611 For selected recent reviews, see:.
(f) Ping, Y.; Ding, Q.; Peng, Y. ACS Catal. 2016, 6, 5989−6005.
(g) Cui, J.; Song, J.; Liu, Q.; Liu, H.; Dong, Y. Chem. - Asian J. 2018,
13, 482−495.
D
Org. Lett. XXXX, XXX, XXX−XXX