Page 7 of 7
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
which provided new design strategies for hydrogen bonding
catalysts. The traditional approach has been to optimize the
attractive component of hydrogen bonding interactions.
However, the molecular rotors demonstrate that large rate
accelerations can be affected by reducing the large repulsive
energy term of the hydrogen bond. A key question is whether
the trends observed for the intramolecular hydrogen bonds in
the molecular rotors are also relevant to bimolecular catalytic
systems, which generally have longer atom-atom distances and
greater flexibility. The extensive analysis of enzyme catalysis
by Warshal suggest that similar strategies of reducing the
repulsive component of non-covalent interactions are operative
in biological systems.42 Specifically, Warshal has hypothesized
Chem., 2006, 71, 5474–5481.
DOI: 10.1039/D0SC02806A
14 A. Mazzanti, L. Lunazzi, R. Ruzziconi, S. Spizzichino and M.
Schlosser, Chemistry - A European Journal, 2010, 16, 9186–9192.
15 C. Roussel, N. Vanthuyne, M. Bouchekara, A. Djafri, J. Elguero
and I. Alkorta, J. Org. Chem., 2008, 73, 403–411.
16 V. Singh and R. M. Singh, Indian J. Chem., 1984, 23B, 782–784.
17 J. Rebek and J. E. Trend, J. Am. Chem. Soc., 1978, 100, 4315–
4316.
18 J. Rebek, Acc. Chem. Res., 1984, 17, 258–264.
19 G. T. Rushton, E. C. Vik, W. G. Burns, R. D. Rasberry and K. D.
Shimizu, Chem. Commun., 2017, 53, 12469–12472.
20 B. E. Dial, P. J. Pellechia, M. D. Smith and K. D. Shimizu, J. Am.
Chem. Soc., 2012, 134, 3675–3678.
21 Y. Wu, G. Wang, Q. Li, J. Xiang, H. Jiang and Y. Wang, Nature
Communications, 2018, 9, 1953.
that
a significant portion of the large catalytic rate
enhancements can be attributed to the ability of the enzyme
framework to preorganize the interacting and catalytic groups
in the transition state. Thus the protein framework positions
polar and charged groups in close proximity overcoming the
repulsive forces and creating a high energy ground state that is
closer to the TS energy. Small molecule catalysts could also be
designed to prepay repulsive energy during binding of the
catalyst and ligand prior to the reaction preceding. Like in the
enzyme, by forming a complex with key reacting groups
positioned appropriately so the energy penalty is paid during
the initial complex formation, a catalyst can more effectively
drive a reaction forward.
22 E. C. Vik, P. Li, P. J. Pellechia and K. D. Shimizu, J. Am. Chem.
Soc., 2019, 141, 16579–16583.
23 R. Cabot, C. A. Hunter and L. M. Varley, Org. Biomol. Chem.,
2010, 8, 1455–1462.
24 Ian R. Kleckner and Mark P. Foster, Biochimica et Biophysica
Acta (BBA) - Proteins and Proteomics, 1814, 942–968.
25 Kirill Nikitin and Ryan O’Gara, Chemistry – A European Journal,
2019, 25, 4551–4589.
26 Corwin. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91,
165–195.
27 W. R. Carroll, C. Zhao, M. D. Smith, P. J. Pellechia and K. D.
Shimizu, Org. Lett., 2011, 13, 4320–4323.
28 C. Zhao, P. Li, M. D. Smith, P. J. Pellechia and K. D. Shimizu, Org.
Lett., 2014, 16, 3520–3523.
29 E. Masson, Org. Biomol. Chem., 2013, 11, 2859–2871.
30 D. C. Patel, R. M. Woods, Z. S. Breitbach, A. Berthod and D. W.
Armstrong, Tetrahedron: Asymmetry, 2017, 28, 1557–1561.
31 R. J. Gillespie, J. Chem. Educ., 1963, 40, 295.
32 X. Yuan, K. Liu and C. Li, J. Org. Chem., 2008, 73, 6166–6171.
33 Y. Valadbeigi and J.-F. Gal, ACS Omega, 2018, 3, 11331–11339.
34 K. Kishikawa, K. Yoshizaki, S. Kohmoto, M. Yamamoto, K.
Yamaguchi and K. Yamada, J. Chem. Soc., Perkin Trans. 1, 1997,
1233–1240.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the National Science Foundation
grant CHE 1709086.
35 S. Parveen, S. Das, A. K. Chandra and T. Zeegers-Huyskens, J.
Theor. Comput. Chem., 2008, 07, 1171–1186.
36 C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310–5324.
37 P. Gilli, L. Pretto, V. Bertolasi and G. Gilli, Acc. Chem. Res., 2009,
42, 33–44.
38 B. Wang, W. Jiang, X. Dai, Y. Gao, Z. Wang and R.-Q. Zhang,
Scientific Reports, 2016, 6, 22099.
39 R. W. Alder, Chem. Rev., 1989, 89, 1215–1223.
40 C. L. Perrin, Acc. Chem. Res., 2010, 43, 1550–1557.
41 C. L. Perrin, J. S. Lau, Y.-J. Kim, P. Karri, C. Moore and A. L.
Rheingold, J. Am. Chem. Soc., 2009, 131, 13548–13554.
42 A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu and M. H. M.
Olsson, Chem. Rev., 2006, 106, 3210–3235.
Notes and references
1
2
W. Li and J. Zhang, Chem. Soc. Rev., 2016, 45, 1657–1677.
L. Simón and J. M. Goodman, J. Org. Chem., 2010, 75, 1831–
1840.
3
4
5
6
M. Nagar and S. L. Bearne, Biochemistry, 2015, 54, 6743–6752.
P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289–296.
Y. Nishikawa, Tetrahedron Letters, 2018, 59, 216–223.
M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van
Leeuwen, Chem. Soc. Rev., 2014, 43, 1660–1733.
M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van
Leeuwen, Chem. Soc. Rev., 2014, 43, 1734–1787.
A. G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713–
5743.
7
8
9
S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L.
Nussbaumer, Chem. Rev., 2015, 115, 10081–10206.
10 E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed.,
2007, 46, 72–191.
11 V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew.
Chem., Int. Ed., 2000, 39, 3348–3391.
12 G. Bott, L. D. Field and S. Sternhell, J. Am. Chem. Soc., 1980, 102,
5618–5626.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins