L. Ballell et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1736–1740
1739
Table 3. In silico prediction of parameters associated with bioavailability for all compounds possessing MICs <8 lg/ml
Com- H-bond H-bond
pound donors acceptors
Mw
ClogP Lipinski
Rotatable PSA Veber
ClogD at ClogD at Topliss Bioavailability
score
2
(A ) compliant? pH 7.4
˚
compliant? bonds
Yes
Yes
pH 6.5
(Topliss)
6
7
0
0
0
0
0
4
5
5
5
5
316.8 3.72
333.4 2.56
315.7 2.20
230.2 2.45
367.8 3.16
5
68.9 Yes
81.8 Yes
92.7 Yes
92.7 Yes
81.8 Yes
2.2
2.2
4.07
3.98
3.41
4.01
3.82
Class 4
Class 3
Class 3
Class 4
Class 3
5
2.56
3.72
3.16
3.11
2.56
3.72
3.16
3.11
8
Yes
Yes
Yes
5
5
5
9
10
Only 2 of the 18 Topliss assessment criteria calculated are included in the table.
References and notes
Table 4. Cytotoxicity and anti-mycobacterial activity of hit com-
pounds. Isoniazid (INH), Rifampicin (RIF) and Ethambutol (ETH)
were employed as controls in the MIC assays
1. World Health Organization. Global Tuberculosis Control:
Surveillance, Planning, Financing. WHO Report 2006.
Geneva, Switzerland, ISBN 92-4 156314-1.
Cl
Cl
Cl
2. Williams, B. G.; Dye, C. Science 2003, 301, 1535.
3. Corbett, E. L.; Watt, C. J.; Catherine, J.; Walker, N.;
Maher, D.; Williams, B. G.; Raviglione, M. C.; Dye, C.
Arch. Intl. Med. 2003, 163, 1009.
4. Septkowitz, A.; Raffalli, J.; Riley, T.; Kiehn, T. E.;
Armstrong, D. Clin. Microbiol. Rev. 1995, 8, 180.
5. Recent synthetic leads are reviewed in: Ballell, L.; Field,
R. A.; Duncan, K.; Young, R. J. Antimicrob. Agents
Chemother. 2005, 49, 2153.
CN
S
N
S
N
S
N
S
N
S
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
CN
(7)
(9)
(10)
(6)
(8)
N
N
6. Reviewed in: Duncan, K.; Barry, C. E. Curr. Opin.
Microbiol. 2004, 7, 1.
Compound
Tox 50 HepG2 (lg/mL)
MIC H37Rv (lg/mL)
7. Burchenal, J. H.; Murphy, M. L.; Ellison, R. R.; Sykes,
M. P.; Tan, T. C.; Leone, L. A.; Karnofsky, D. A.; Craver,
L. F.; Dargeon, H. W.; Rhoads, C. P. Blood 1953, 8, 965.
8. Elion, G. B. J. Med. Virol. 1993, 2.
9. Rundles, R. W. Arch. Intl. Med. 1985, 145, 1492.
10. Chiosis, G.; Timaul, M. N.; Lucas, B.; Munster, P. N.;
Zheng, F. F.; Sepp-Lorenzino, L.; Rosen, N. Chem. Biol.
2001, 8, 289.
6
>20
>40
2
8
7
8
8
8
9
10
4
8
>40
—
0.5–1
0.25
0.016
2.5
INH*
RIF*
ETH*
—
11. Crews, C. M.; Mohan, R. Curr. Opin. Chem. Biol. 2000, 4,
47.
12. Knockaert, M.; Gray, N.; Damiens, E.; Chang, Y.-T.;
Grellier, P.; Grant, K.; Fergusson, D.; Mottram, J.; Soete,
M.; Dubremetz, J.-F.; Le Roch, K.; Doerig, C.; Schultz, P.
G.; Meijer, L. Chem. Biol. 2000, 7, 411.
13. Laufer, S. A.; Domeyer, D. M.; Scior, T. R.; Albrecht, W.;
Hauser, D. R. J. Med. Chem. 2005, 48, 710.
14. Armstrong, J. I.; Portley, A. R.; Chang, Y.-T.; Nieren-
garten, D. M.; Cook, B. N.; Bowman, K. G.; Bishop, A.;
Gray, N. S.; Shokat, K. M.; Schultz, P. G.; Bertozzi, C. R.
Angew. Chem. Int. Ed. 2000, 39, 1303.
15. Verdugo, D. E.; Cancilla, M. T.; Ge, X.; Gray, N. S.;
Chang, Y.-T.; Schultz, P. G.; Negishi, M.; Leary, J. A.;
Bertozzi, C. R. J. Med. Chem. 2001, 44, 2683.
16. Wu, X.; Ding, S.; Ding, Q.; Gray, N. S.; Schultz, P. G.
J. Am. Chem. Soc. 2002, 124, 14521.
inal chemistry, we generated cytotoxicity data (Tox 50)
on the most potent compounds in a HepG2 cell line
and generated in silico predictions of the likely oral
pharmacokinetic profile. Encouragingly, three of the five
hit molecules were shown non-cytotoxic at the highest
concentration assayed (Table 4). The in silico predictors
also indicated a strong likelihood of good oral bioavail-
ability;35 through the generation of predictors based on
the calculated parameters described by Lipinski,33
Veber34 and Topliss35 (Table 3).
In summary, N-,S-di-alkyl 4-thio-1H-pyrazolo[3,4-d]py-
rimidines have been investigated as anti-mycobacterial
agents. The best compound exhibited activity in vitro
that is comparable to clinically successful drugs (e.g.,
ethambutol MIC 2 lg/ml) coupled with no cytotoxicity
against a HepG2 cell line. The SAR developed herein,
coupled with favourable pharmacokinetic predictions,
substantiate these molecules as a significant lead series
in the search for new anti-tubercular agents.
17. Gundersen, L. L.; Nissen-Meyer, J.; Spilsberg, B. J. Med.
Chem. 2002, 45, 1383.
18. Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Bioorg.
Med. Chem. Lett. 2001, 11, 1675.
ˇ
´
ˇ´
´
19. Klimesova, V.; Kocı, J.; Waisser, K.; Kaustova, J. Il
Farmaco 2002, 57, 259.
20. Pathak, A. K.; Pathak, V.; Seitz, L. E.; Suling, W. J.;
Reynolds, R. C. J. Med. Chem. 2004, 47, 273.
21. Hanke, J. H.; Gardner, J. P.; Dow, R. L.; Changelian, P.
S.; Brissette, W. H.; Weringer, E. J.; Pollok, B. A.;
Connelly, P. A. J. Biol. Chem. 1996, 271, 695.
22. Traxler, P.; Furet, P. Pharmacol. Ther. 1999, 82, 195.
23. Bergman, M. R.; Holycross, B. J. J. Pharmacol. Exp. Ther.
1996, 279, 247.
Acknowledgments
We thank the GlaxoSmithKline Action TB Initiative for
´
´
financial support and Marıa Jesus Almela for generating
the cytotoxicity data.
24. Ali, A.; Taylor, G. E.; Ellsworth, K.; Harris, G.; Painter,
R.; Silver, L. L.; Young, K. J. Med. Chem. 2003, 46, 1824.