Communication
ChemComm
3 (a) R. Eelkema, K. Maeda, B. Odell and H. L. Anderson, J. Am. Chem.
Soc., 2007, 129, 12384–12385; (b) E. Arunkumar, C. C. Forbes,
B. C. Noll and B. D. Smith, J. Am. Chem. Soc., 2005, 127,
3288–3289; (c) J. J. Gassensmith, J. M. Baumes and B. D. Smith,
Chem. Commun., 2009, 6329–6338; (d) G. T. Spence, G. V. Hartland
and B. D. Smith, Chem. Sci., 2013, 4, 4240–4244; (e) M. Franz,
J. A. Januszewski, D. Wendinger, C. Neiss, L. D. Movsisyan,
solid state are of great difference. The difference between the
ACQ effects of the protonated species are not as pronounced
(Fig. 26, ESI†). As we can see from Fig. 4d and e, the fluores-
cence of 1b powder (lem = 501 nm, FF = 2.5%) is almost
completely quenched while the suit[1]ane 3 exhibits a bright
blue emission (lem = 484 nm, FF = 21.7%) when irradiated at
342 nm. Since the cryptand is silent upon excitation under the
same conditions, the 8-fold higher solid-state fluorescence
quantum yield of suit[1]ane compared with the unencapsulated
benzimidazole axle 1b further proves the advantage of using a
mechanically interlocking strategy to promote the fluorescence
emission of molecular materials.
In summary, a suit[1]ane was prepared by template-directed
synthesis from a DB24C8-based crown ether wheel and a 2,4,
7-trisubstituted benzimidazole axle as the fluorophore, and its
fluorescence properties were studied. Upon encapsulation of
the ‘suit’, the ACQ effect of the axle was hindered by mechan-
ical protection and supramolecular interactions in solution. In
the solid state, the suit[1]ane exhibits enhanced fluorescence
emission with an 8-fold higher fluorescence quantum yield
than the unprotected axle. This work might provide unique
insight into the transformation of the fluorescence properties
of molecules through incorporation of mechanically inter-
locked structures, as well as enlarging the toolbox of chemists
who seek prevention of aggregation-caused quenching of fluor-
escent dyes and probes.
¨
F. Hampel, H. L. Anderson, A. Gorling and R. R. Tykwinski,
Angew. Chem., Int. Ed., 2015, 54, 6645–6649; ( f ) L. D. Movsisyan,
M. Franz, F. Hampel, A. L. Thompson, R. R. Tykwinski and
H. L. Anderson, J. Am. Chem. Soc., 2016, 138, 1366–1376;
(g) C. B. Caputo, K. Zhu, V. N. Vukotic, S. J. Loeb and
D. W. Stephan, Angew. Chem., Int. Ed., 2013, 52, 960–963.
4 (a) V. N. Vukotic, K. Zhu, G. Baggi and S. J. Loeb, Angew. Chem., Int.
Ed., 2017, 56, 6136–6141; (b) Y. Sagara, M. Karman, E. Verde-Sesto,
K. Matsuo, Y. Kim, N. Tamaoki and C. Weder, J. Am. Chem. Soc.,
2018, 140, 1584–1587; (c) A. Garci, Y. Beldjoudi, M. S. Kodaimati,
J. E. Hornick, M. T. Nguyen, M. M. Cetin, C. L. Stern, I. Roy,
E. A. Weiss and J. F. Stoddart, J. Am. Chem. Soc., 2020, 142,
7956–7967; (d) L. Ma, S. Wang, C. Li, D. Cao, T. Li and X. Ma,
Chem. Commun., 2018, 54, 2405–2408; (e) C. R. Benson,
L. Kacenauskaite, K. L. VanDenburgh, W. Zhao, B. Qiao,
T. Sadhukhan, M. Pink, J. Chen, S. Borgi, C.-H. Chen, B. J. Davis,
Y. C. Simon, K. Raghavachari, B. W. Laursen and A. H. Flood, Chem,
2020, 6, 1978–1997.
5 (a) U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier,
¨
¨
¨
U. Siegner, E. O. Gobel, K. Mullen and H. Bassler, Chem. Phys. Lett.,
1995, 240, 373–378; (b) C.-T. Chen, Chem. Mater., 2004, 16,
4389–4400.
6 (a) W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu,
H. S. Kwok, Y. Ma and B. Z. Tang, Adv. Mater., 2010, 22, 2159–2163;
(b) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011, 40,
5361–5388.
7 G. Yu, D. Wu, Y. Li, Z. Zhang, L. Shao, J. Zhou, Q. Hu, G. Tang and
F. Huang, Chem. Sci., 2016, 7, 3017–3024.
K. Z. thanks the National Natural Science Foundation of China
(21701192, 21971268), the Program for Guangdong Introducing
Innovative and Entrepreneurial Teams (2017ZT07C069), the Special
Funds for the Cultivation of Guangdong College Students’ Scientific
and Technological Innovation (pdjh2019b0018), and Sun Yat-Sen
University for financial support.
8 (a) Q.-C. Wang, D.-H. Qu, J. Ren, K. Chen and H. Tian, Angew. Chem.,
Int. Ed., 2004, 43, 2661–2665; (b) D.-H. Qu, F.-Y. Ji, Q.-C. Wang and
H. Tian, Adv. Mater., 2006, 18, 2035–2038; (c) L.-L. Zhu, D.-H. Qu,
D. Zhang, Z.-F. Chen, Q.-C. Wang and H. Tian, Tetrahedron, 2010,
66, 1254–1260.
9 (a) H. Li, J.-N. Zhang, W. Zhou, H. Zhang, Q. Zhang, D.-H. Qu and
H. Tian, Org. Lett., 2013, 15, 3070–3073; (b) Y. Liu, Q. Zhang,
W.-H. Jin, T.-Y. Xu, D.-H. Qu and H. Tian, Chem. Commun., 2018,
54, 10642–10645.
10 X. Yao, X. Ma and H. Tian, J. Mater. Chem. C, 2014, 2, 5155–5160.
11 Y. Si, Q. Zhang, W. Jin, S. Yang, Z. Wang and D. Qu, Dyes Pigm.,
2020, 173, 107919.
12 M. V. R. Raju and H.-C. Lin, Org. Lett., 2014, 16, 5564–5567.
13 X.-Y. Lou, N. Song and Y.-W. Yang, Chem. – Eur. J., 2019, 25,
11975–11982.
14 (a) A. R. Williams, B. H. Northrop, T. Chang, J. F. Stoddart,
A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed., 2006, 45,
6665–6669; (b) W. Liu, C. L. Stern and J. F. Stoddart, J. Am. Chem.
Soc., 2020, 142, 10273–10278; (c) X.-Y. Chen, D. Shen, K. Cai, Y. Jiao,
H. Wu, B. Song, L. Zhang, Y. Tan, Y. Wang, Y. Feng, C. L. Stern and
J. F. Stoddart, J. Am. Chem. Soc., 2020, 142, 20152–20160.
15 K. Zhu, G. Baggi, V. N. Vukotic and S. J. Loeb, Chem. Sci., 2017, 8,
3898–3904.
16 K. Zhu and S. J. Loeb, Can. J. Chem., 2020, 98, 285–291.
17 (a) N. Noujeim, K. Zhu, V. N. Vukotic and S. J. Loeb, Org. Lett., 2012,
14, 2484–2487; (b) K. Zhu, V. N. Vukotic, N. Noujeim and S. J. Loeb,
Chem. Sci., 2012, 3, 3265–3271.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) C. J. Bruns and J. F. Stoddart, The Nature of the Mechanical Bond:
From Molecules to Machines, Wiley, 2016; (b) J. F. Stoddart, Angew.
Chem., Int. Ed., 2014, 53, 11102–11104; (c) J. P. Sauvage and
C. Dietrich-Buchecker, Molecular Catenanes, Rotaxanes and Knots:
A Journey Through the World of Molecular Topology, Wiley, 2007;
(d) G. Schill, Catenanes, Rotaxanes and Knots, Academic Press, New
York, 1971; (e) K. Zhu and S. J. Loeb, in Molecular Machines and
Motors: Recent Advances and Perspectives, ed. A. Credi, S. Silvi and
M. Venturi, Springer International Publishing, Cham, 2014;
( f ) S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L.
Nussbaumer, Chem. Rev., 2015, 115, 10081–10206; (g) J. F. Stoddart,
Chem. Soc. Rev., 2009, 38, 1802–1820; (h) D. B. Amabilino and
J. F. Stoddart, Chem. Rev., 1995, 95, 2725–2828.
18 A. M. Elizarov, T. Chang, S.-H. Chiu and J. F. Stoddart, Org. Lett.,
2002, 4, 3565–3568.
19 K. Zhu, V. N. Vukotic and S. J. Loeb, Angew. Chem., Int. Ed., 2012, 51,
2168–2172.
2 P. N. Taylor, M. J. O’Connell, M. A. McNeill, M. J. Hall, R. T. Aplin
and H. L. Anderson, Angew. Chem., Int. Ed., 2000, 39, 3456–3460.
This journal is © The Royal Society of Chemistry 2021
3242 | Chem. Commun., 2021, 57, 3239–3242