ORGANIC
LETTERS
2007
Vol. 9, No. 7
1315-1318
Development of a Library of
6-Arylcoumarins as Candidate
Fluorescent Sensors
Tomoya Hirano,* Kenichi Hiromoto, and Hiroyuki Kagechika*
School of Biomedical Science, Institute of Biomaterials and Bioengineering,
Tokyo Medical and Dental UniVersity, 2-3-10 Kanda-Surugadai, Chiyoda-ku,
Tokyo 101-0062, Japan
hiraomc@tmd.ac.jp; kageomc@tmd.ac.jp
Received January 19, 2007
ABSTRACT
A bromocoumarin scaffold (1) was reacted with various boronic acid derivatives (2a−l) to afford a library of 6-arylcoumarins (3a−l). This library
was found to contain candidate fluorescent sensors for peptidase activity and for nitric oxide.
Functional fluorescent molecules are useful in many fields
of scientific research, including analytical chemistry or cell
biology. For example, fluorescent molecules, whose fluo-
rescence properties can be changed by binding to or reacting
with ions, small molecules, or enzymes, enable us to estimate
the concentration or activity of the targets.1,2 Although some
theoretical approaches to the design of such sensors have
been reported,2,3 most currently available sensors were
developed empirically. Combinatorial synthesis of libraries
of fluorescent molecules is an effective approach.4 Chang
et al. have developed libraries of styryl dyes bearing DNA-
sensitive fluorescent sensors5 and â-amyloid sensors,6 and
Finney et al. developed a fluorescent Hg2+ sensor via
construction of a library.7
Coumarins are of interest because of their pharmacological
activity8 and photophysical properties, and they have been
applied as laser dyes9 and fluorophores for fluorescent
sensors.10 Bauerle et al.11 and Wang et al.12 reported coumarin
libraries with diversity at the 3-position via Suzuki-Miyaura,
(5) Lee, J. W.; Jung. M.; Rosania, G. R.; Chang, Y.-T. Chem. Commun.
2003, 1852-1853.
(6) Li, Q.; Lee, J.-S.; Ha, C.; Park, C. B.; Yang, G.; Gan, W. B.; Chang,
Y.-T. Angew. Chem., Int. Ed. 2004, 43, 6331-6335.
(7) Mello, J. V.; Finney, N. S. J. Am. Chem. Soc. 2005, 127, 10124-
10125.
(8) (a) Romines, K. R.; Morris, J. K.; Howe, W. J.; Tomich, P. K.; Horng,
M.-M.; Chong, K.-T.; Hinshaw, R. R.; Anderson, D. J.; Strohbach, J. W.;
Turner, S. R.; Mizak, S. A. J. Med. Chem. 1996, 39, 4125-4130. (b) Raad,
I.; Terreux, R.; Richomme, P.; Matera, E.-L.; Dumontet, C.; Raynaud, J.;
Guilet, D. Bioorg. Med. Chem. 2006, 14, 6979-6987.
(9) Koefod, R. S.; Mann, K. R. Inorg. Chem. 1989, 28, 2285-2290.
(10) (a) Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Chindo, Y.;
Kitamura, Y.; Oka, K.; Suzuki, K. J. Am. Chem. Soc. 2005, 127, 10798-
10799. (b) Setsukinai, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T.
J. Chem. Soc., Perkin Trans. 2 2000, 2453-2457.
(1) Lackowitz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.;
Springer Science: New York, 2006.
(2) de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A. J.
M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV. 1997, 97,
1515-1566.
(3) (a) Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.;
Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 8666-8671. (b) Urano, Y.;
Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T. J. Am. Chem.
Soc. 2005, 127, 4888-4894.
(4) (a) Finney, N. S. Curr. Opi. Chem. Biol. 2006, 10, 238-245. (b)
Zhu, Q.; Yoon, H.-S.; Parikh, P. B.; Chang, Y.-T.; Yao, S. Q. Tetrahedron
Lett. 2002, 43, 5083-5086. (c) Cao, H.; Chang, V.; Hernandez, R.; Heagy,
M. D. J. Org. Chem. 2005, 70, 4929-4934.
(11) Schiedel, M.-S.; Briehen, C. A.; Bauerle, P. Angew. Chem., Int.
Ed. 2001, 40, 4677-4680.
(12) Silvakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.;
Wang, Q. Org. Lett. 2004, 6, 4603-4606.
10.1021/ol070142z CCC: $37.00
© 2007 American Chemical Society
Published on Web 02/28/2007