Wu et al.
catenanes are able to exchange reversibly in solution. Moreover,
they are also potentially useful supramolecular platforms for
exploring new dynamic combinatorial chemistry. However,
examples of catenanes assembled from the formation of
coordination bonds-incorporated rings are relatively few.6-8
Therefore, it remains of importance to develop new efficient
approaches for such types of dynamic interlocked systems.
Foldamers are linear molecules that are induced by nonco-
valent forces to adopt rigidified well-established secondary
structures.9 Due to its directionality and strength, hydrogen
bonding is one of the ideal noncovalent forces for constructing
such structurally elegant artificial structures. As a result of the
rigid and planar features of the aromatic amide unit, hydrogen
bonding-induced foldamers with the aromatic oligoamide back-
bonesusuallypossesshighlypredictablecompactconformation.10-21
We recently initiated a program to explore their potentials as a
new generation of preorganized scaffolds for supramolecular
self-assembly.9i Previously, we utilized rationally designed
rigidified aromatic amide oligomers as backbones for construct-
ing fullerene-recognizing supramolecular tweezers.22 More
recently we also assembled a new series of highly stable artificial
heteroduplexes by introducing simple self-binding amide sites
into preorganized aromatic oligoamide skeletons.23 We herein
describe how a foldamer-based bis-zinc porphyrin tweezer is
utilized to efficiently direct the self-assembly of a new series
of dynamic [2]catenanes from three components via two discrete
noncovalent interactions.
Results and Discussion
(2) (a) Vo¨gtle, F.; Du¨nnwald, T.; Schmidt, T. Acc. Chem. Res. 1996,
29, 451. (b) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.;
Cowley, A. R. J. Am. Chem. Soc. 2004, 126, 15364. (c) Schalley, C. A.;
Weilandt, T.; Bru¨ggemann, J.; Vo¨gtle, F. Top. Curr. Chem. 2004, 248, 141.
(d) Balzani, V.; Credi, A.; Ferrer, B.; Silvi, S.; Venturi, M. Top. Curr. Chem.
2005, 262, 1. (e) Collin, J.-P.; Heitz, V.; Sauvage, J.-P. Top. Curr. Chem.
2005, 262, 29. (f) Moonen, N. N. P.; Flood, A. H.; Ferna´ndez, J. M.;
Stoddart, J. F. Top. Curr. Chem. 2005, 262, 99. (g) Kay, E. R.; Leigh, D.
A. Top. Curr. Chem. 2005, 262, 133. (h) Beer, P. D.; Sambrook, M. R.;
Curiel, D. Chem. Commun. 2006, 2105. (i) Leigh, D. A.; Perez, E. M. Top.
Curr. Chem. 2006, 265, 185. (j) Bonnet, S.; Collin, J.-P.; Koizumi, M.;
Mobian, P.; Sauvage, J.-P. AdV. Mater. 2006, 18, 1239.
(3) (a) Lehn, J.-M.; Eliseev, A. V. Science 2001, 291, 2331. (b) Otto,
S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297, 590. (c) Rowan,
S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2002, 41, 899. (d) Furlan, R. L. E.; Otto, S.; Sanders,
J. K. M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4801. (e) Raehm, L.;
Hamilton, D. G.; Sanders, J. K. M. Synlett 2002, 1743. (f) Reymond, J.-L.
Angew. Chem., Int. Ed. 2004, 43, 5577. (g) Cantrill, S. J.; Chichak, K. S.;
Peters, A. J.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 1. (h) de Bruin, B.;
Hauwert, P.; Reek, J. N. H. Angew. Chem., Int. Ed. 2006, 45, 2660.
(4) For representative examples, see: (a) Kolchinski, A. G.; Alcock,
N. W.; Roesner, R. A.; Busch, D. H. Chem. Commun. 1998, 1437. (b) Kidd,
T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999, 121, 1599. (c)
Weck, M.; Mohr, B.; Sauvage, J.-P.; Grubbs, R. H. J. Org. Chem. 1999,
64, 5463. (d) Furusho, Y.; Oku, T.; Hasegawa, T.; Tsuboi, A.; Kihara, N.;
Takata, T. Chem. Eur. J. 2003, 9, 2895. (e) Wang, L. Y.; Vysotsky, M. O.;
Bogdan, A.; Bolte, M.; Bo¨hmer, V. Science 2004, 304, 1312. (f) Schalley,
C. A. Angew. Chem., Int. Ed. 2004, 43, 4399. (g) Badjic´, J. D.; Cantrill,
S. J.; Grubbs, R. H.; Guidry, E. N.; Orenes, R.; Stoddart, J. F. Angew.
Chem., Int. Ed. 2004, 43, 3273. (h) Guidry, E. N.; Cantrill, S. J.; Stoddart,
J. F.; Grubbs, R. H. Org. Lett. 2005, 7, 2129. (i) Fuller, A. M. L.; Leigh,
D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. J. Am. Chem. Soc.
2005, 127, 12612. (j) Zhu, X.-Z.; Chen, C.-F. J. Am. Chem. Soc. 2005,
127, 13158. (k) Bogdan, A.; Rudzevich, Y.; Vysotsky, M. O.; Bo¨hmer, V.
Chem. Commun. 2006, 2941. (l) Hutin, M.; Schalley, C. A.; Bernardinelli,
G.; Nitschke, J. R. Chem. Eur. J. 2006, 12, 4069.
(5) The dynamic covalent approach employs reversible reactions as the
final covalent bond-forming step in the synthesis of catenanes or rotaxanes.
Nevertheless, the resulting interlocked architectures are usually stable in
the absence of catalysts or other additives.
(6) (a) Fujita, M. Acc. Chem. Res. 1999, 32, 53. (b) Tashiro, S.;
Tominaga, M.; Kusukawa, T.; Kawano, M.; Sakamoto, S.; Yamakuchi, Y.;
Fujita, M. Angew. Chem., Int. Ed. 2003, 42, 3267. (c) Hori, A.; Yamada,
K.-i.; Fujita, M. Angew. Chem., Int. Ed. 2004, 43, 5016.
(7) (a) Try, A. C.; Harding, M. M.; Hamilton, D. G.; Sanders, J. K. M.
Chem. Commun. 1998, 723. (b) Chas, M.; Pia, E.; Toba, R.; Peinador, C.;
Quintela, J. M. Inorg. Chem. 2006, 45, 6117. (c) Habermehl, N. C.; Jennings,
M. C.; McArdle, C. P.; Mohr, F.; Puddephatt, R. J. Organometallics 2005,
24, 5004.
(8) Gruter, G.-J.; de Kanter, F. J. J.; Markies, P. R.; Nomoto, T.;
Akkerman, O. S.; Bickelhaupt, F. J. Am. Chem. Soc. 1993, 115, 12179.
(9) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b) Stigers,
K. D.; Soth, M. J.; Nowick, J. S. Curr. Opin. Chem. Biol. 1999, 3, 714. (c)
Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem.
ReV. 2001, 101, 3893. (d) Cubberley, M. S.; Iverson, B. L. Curr. Opin.
Chem. Biol. 2001, 5, 650. (e) Schmuck, C. Angew. Chem., Int. Ed. 2003,
42, 2448. (f) Huc, I. Eur. J. Org. Chem. 2004, 17. (g) Sanford, A.; Yamato,
K.; Yang, X. W.; Yuan, L. H.; Han, Y. H.; Gong, B. Eur. J. Biochem.
2004, 271, 1416. (h) Stone, M. T.; Heemstra, J. M.; Moore, J. S. Acc. Chem.
Res. 2006, 39, 11. (i) Li, Z.-T.; Hou, J.-L.; Li, C.; Yi, H.-P. Chem. Asian
J. 2006, 1, 766.
The strategy used for the construction of the new class of
dynamic [2]catenanes involves three components, i.e., A, B, and
C, and is shown in Figure 1. Component A, incorporating two
zinc porphyrin units, is driven by intramolecular hydrogen
(10) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1996,
118, 7529.
(11) (a) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk,
N. A.; Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475. (b) Mayer,
M. F.; Nakashima, S.; Zimmerman, S. C. Org. Lett. 2005, 7, 3005.
(12) (a) Sinkeldam, R. W.; van Houtem, M. H. C. J.; Koeckelberghs,
G.; Vekemans, J. A. J. M.; Meijer, E. W. Org. Lett. 2006, 8, 383. (b)
Sinkeldam, R. W.; van Houtem, M. H. C. J.; Pieterse, K.; Vekemans,
J. A. J. M.; Meijer, E. W. Chem. Eur. J. 2006, 12, 6129.
(13) (a) Gong, B.; Zeng, H.; Zhu, J.; Yuan, L.; Han, Y.; Cheng, S.;
Furukawa, M.; Parra, R. D.; Kovalevsky, A. Y.; Mills, J. L.; Skrzypczak-
Jankun, E.; Martinovic, S.; Smith, R. D.; Zheng, C.; Szyperski, T.; Zeng,
X. C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11583. (b) Yang, X. W.;
Martinovic, S.; Smith, R. D.; Gong, B. J. Am. Chem. Soc. 2003, 125, 9932.
(c) Yang, X. W.; Yuan, L. H.; Yamato, K.; Brown, A. L.; Feng, W.;
Furukawa, M.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2004, 126, 3148.
(d) Zhang, A.; Han, Y.; Yamato, K.; Zeng, X. C.; Gong, B. Org. Lett. 2006,
8, 803.
(14) Kolomiets, E.; Berl, V.; Odriozola, I.; Stadler, A.-M.; Kyritsakas,
N.; Lehn, J.-M. Chem. Commun. 2003, 2868.
(15) Recker, J.; Tomcik, D.; Parquette, J. R. J. Am. Chem. Soc. 2000,
122, 10298.
(16) Hunter, C. A.; Spitaleri, A.; Tomas, S. Chem. Commun. 2005, 3691.
(17) Hu, Z.-Q.; Hu, H.-Y.; Chen, C.-F. J. Org. Chem. 2006, 71, 1131.
(18) Kanamori, D.; Okamura, T.; Yamamoto, H.; Ueyama, N. Angew.
Chem., Int. Ed. 2005, 44, 969.
(19) Masu, H.; Sakai, M.; Kishikawa, K.; Yamamoto, M.; Yamaguchi,
K.; Kohmoto, S. J. Org. Chem. 2005, 70, 1423.
(20) (a) Jiang, H.; Le´ger, J.-M.; Huc, I. J. Am. Chem. Soc. 2003, 125,
3448. (b) Garric, J.; Le´ger, J.-M.; Huc, I. Angew. Chem., Int. Ed. 2005, 44,
1954. (c) Dolain, C.; Zhan, C.; Le´ger, J.-M.; Daniels, L.; Huc, I. J. Am.
Chem. Soc. 2005, 127, 2400. (d) Dolain, C.; Le´ger, J.-M.; Delsuc, N.;
Gornitzka, H; Huc, I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16146. (e)
Buffeteau, T.; Ducasse, L.; Poniman, L.; Delsuc, N.; Huc, I. Chem. Commun.
2006, 2714.
(21) (a) Wu, Z.-Q.; Jiang, X.-K.; Zhu, S.-Z.; Li, Z.-T. Org. Lett. 2004,
6, 229. (b) Zhu, J.; Wang, X.-Z.; Chen, Y.-Q.; Jiang, X.-K.; Chen, X.-Z.;
Li, Z.-T. J. Org. Chem. 2004, 69, 6221. (c) Hou, J.-L.; Shao, X.-B.; Chen,
G.-J.; Zhou, Y.-X.; Jiang, X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2004, 126,
12386. (d) Chen, Y.-Q.; Wang, X.-Z.; Shao, X.-B.; Hou, J.-L.; Chen,
X.-Z.; Jiang, X.-K.; Li, Z.-T. Tetrahedron 2004, 60, 10253. (e) Yi, H.-P.;
Shao, X.-B.; Hou, J.-L.; Li, C.; Jiang, X.-K.; Li, Z.-T. New J. Chem. 2005,
29, 1213. (f) Yi, H.-P.; Li, C.; Hou, J.-L.; Jiang, X.-K.; Li, Z.-T. Tetrahedron
2005, 61, 7974. (g) Wu, Z.-Q.; Jiang, X.-K.; Li, Z.-T. Tetrahedron Lett.
2005, 46, 8067. (h) Li, C.; Ren, S.-F.; Hou, J.-L.; Yi, H.-P.; Zhu, S.-Z.;
Jiang, X.-K.; Li, Z.-T. Angew. Chem., Int. Ed. 2005, 44, 5725. (i) Li,
C.-Z.; Zhu, J.; Wu, Z.-Q.; Hou, J.-L.; Li, C.; Shao, X.-B.; Jiang, X.-K.; Li,
Z.-T.; Gao, X.; Wang, Q.-R. Tetrahedron 2006, 62, 6973.
(22) (a) Wu, Z.-Q.; Shao, X.-B.; Li, C.; Hou, J.-L.; Wang, K.; Jiang,
X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2005, 127, 17460. (b) Hou, J.-L.; Yi,
H.-P.; Shao, X.-B.; Li, C.; Wu, Z.-Q.; Jiang, X.-K.; Wu, L.-Z.; Tung,
C.-H.; Li, Z.-T. Angew. Chem., Int. Ed. 2006, 45, 796.
(23) Zhu, J.; Lin, J.-B.; Xu, Y.-X.; Shao, X.-B.; Jiang, X.-K.; Li, Z.-T.
J. Am. Chem. Soc. 2006, 128, 12307.
2898 J. Org. Chem., Vol. 72, No. 8, 2007