C
T. Sengoku et al.
Letter
Synlett
that the C–H spirocyclization reaction will have broad po-
tential utility in the syntheses of spiroheterocyclic com-
pounds.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
R
N
R
N
O
O
PIDA (1.2 equiv)
KBr (1.0 equiv)
CO2H
O
References and Notes
O
CH2Cl2 (0.1 M)
r.t., 24 h
1a–j
2a–j
(1) (a) List, B. Synlett 2001, 1675. (b) Harb, H. Y.; Procter, D. J.
Synlett 2012, 6. (c) Müller, T. J. J. Synthesis 2012, 159.
(d) Kocienski, P. Synfacts 2012, 8, 5.
(2) Zhang, Z. J.; Nian, Y.; Zhu, Q. F.; Li, X. N.; Su, J.; Wu, X-D.; Yang, J.;
Zhao, Q.-S. Org. Lett. 2017, 19, 4668.
Ph
N
H
Bn
N
N
N
O
O
O
O
O
O
O
O
O
O
O
O
(3) Yixizhuoma; Ishikawa, N.; Abdelfattah, M. S.; Ishibashi, M.
J. Antibiot. 2017, 70, 601.
(4) Liu, Q.-Y.; Zhou, T.; Zhao, Y.-Y.; Chen, L.; Gong, M.-W.; Xia, Q.-
W.; Ying, M.-G.; Zheng, Q.-H.; Zhang, Q.-Q. Mar. Drugs 2015, 13,
4733.
2e
(78%)
2b
2c
(82%)
2d
(77%)
(13%)
(66%)a
Ac
N
Boc
N
Me
N
O
O
O
O
O
O
O
O
O
(5) (a) Almond-Thynne, J.; Han, J.; White, A. J. P.; Polyzos, A.;
Parsons, P. J.; Barrett, A. G. M. J. Org. Chem. 2018, 83, 6783.
(b) Zhang, C.; Liu, M.; Ding, M.; Xie, H.; Zhang, F. Org. Lett. 2017,
19, 3418. (c) Yahata, K.; Ye, N.; Ai, Y.; Iso, K.; Kishi, Y. Angew.
Chem. Int. Ed. 2017, 56, 10796. (d) Zeng, C.; Zhao, J.; Zhao, G. Tet-
rahedron 2015, 71, 64. (e) Davy, J. A.; Moreau, B.; Oliver, A. G.;
Wulff, J. E. Tetrahedron 2015, 71, 2643. (f) Miura, Y.; Hayashi, N.;
Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2012, 134, 11995.
(g) Nakajima, M.; Fuwa, H.; Sasaki, M. Bull. Chem. Soc. Jpn. 2012,
85, 948. (h) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem.
Int. Ed. 2012, 51, 936. (i) Massen, Z. S.; Sarli, V. C.; Coutouli-
Argyropoulou, E.; Gallos, J. K. Carbohydr. Res. 2011, 346, 230.
(j) Robinson, J. E.; Brimble, M. A. Chem. Commun. 2005, 1560.
(k) Suenaga, K.; Araki, K.; Sengoku, T.; Uemura, D. Org. Lett.
2001, 3, 527.
2f
(79%)
2g
(82%)
2h
(0%)
Me
Me
N
N
O
O
O
O
O
O
2i
2j
(87%)b
(64%)b
O
O
O
PIDA (2.4 equiv)
KBr (2.0 equiv)
CO2H
O
O
O
CH2Cl2 (0.1 M)
40 °C, 12 h
2k
(73%)
1k
Scheme 2 Synthesis of spirolactone derivatives. a The reaction was
performed in TFE. b Reactions were performed with 2.4 equiv of PIDA
and 2.0 equiv of KBr for 12 h at 40 °C.
(6) (a) Sengoku, T.; Kamiya, Y.; Kawakami, A.; Takahashi, M.; Yoda,
H. Eur. J. Org. Chem. 2017, 6096. (b) Sengoku, T.; Murata, Y.; Aso,
Y.; Kawakami, A.; Inuzuka, T.; Takahashi, M.; Yoda, H. Org. Lett.
2015, 17, 5846.
(7) (a) Wang, P. C.; Asbell, W. J. US Patent 4968812 A, 19901106,
1990. (b) Wang, P. C. US Patent 4939251 A, 19900703, 1990.
(8) For selected reviews on C–H functionalization, see: (a) Qiu, Y.;
Gao, S. Nat. Prod. Rep. 2016, 33, 562. (b) Ottenbacher, R. V.; Talsi,
E. P.; Bryliakov, K. P. Molecules 2016, 21, 1454. (c) Liu, B.; Shi, B.-
F. Tetrahedron Lett. 2015, 56, 15. (d) Sun, C.-L.; Li, B.-J.; Shi, Z.-J.
Chem. Rev. 2011, 111, 1293. (e) Che, C.-M.; Lo, V. K.-Y.; Zhou, C.-
Y.; Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950. (f) Zhang, S.-Y.;
Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937. (g) Lu, H.;
Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899. (h) Zhou, M.;
Crabtree, R. H. Chem. Soc. Rev. 2011, 40, 1875. (i) Lyons, T. W.;
Sanford, M. S. Chem. Rev. 2010, 110, 1147. (j) Giri, R.; Shi, B.-F.;
Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(9) For selected examples of heterofunctionalization of C–H bonds
in heterocyclic molecules, see: (a) Singh, M. K.; Akula, H. K.;
Satishkumar, S.; Stahl, L.; Lakshman, M. K. ACS Catal. 2016, 6,
1921. (b) Gong, M.; Huang, J.-M. Chem. Eur. J. 2016, 22, 14293.
(c) Li, L.; Yu, Z.; Shen, Z. Adv. Synth. Catal. 2015, 357, 3495.
(d) Yang, Q.; Choy, P. Y.; Fu, W. C.; Fan, B.; Kwong, F. Y. J. Org.
Chem. 2015, 80, 11193. (e) Sun, J.; Wang, Y.; Pan, Y. Org. Biomol.
Chem. 2015, 13, 3878. (f) Durán-Peña, M. J.; Botubol-Ares, J. M.;
Hanson, J. R.; Hernández-Galán, R.; Collado, I. G. Eur. J. Org.
Chem. 2015, 6333. (g) Kamijo, S.; Tao, K.; Takao, G.; Murooka, H.;
Murafuji, T. Tetrahedron Lett. 2015, 56, 1904. (h) Barve, B. D.;
Wu, Y.-C.; El-Shazly, M.; Korinek, M.; Cheng, Y.-B.; Wang, J.-J.;
Chang, F.-R. Org. Lett. 2014, 16, 1912. (i) Priyadarshini, S.; Amal
In conclusion, we have developed the new synthetic
methodology for azaspiro-γ-lactones. A key outcome of this
work is the PIDA/KBr-promoted C–H spirolactonization of
easily accessible lactam carboxylic acids. The protocol is ap-
plicable to the preparation of the bislactone compounds as
well as alicyclic azaspiro-γ-lactones. The simplicity and
broad applicability of this methodology will be valuable in
materials and medicinal chemistry. Further investigations
into the formation of other types of spirocycles such as lact-
am–lactam or lactam–ether structures are underway in our
laboratory, and the details of those reactions will be sub-
mitted as a full paper.
Funding Information
This work was supported financially in part by JSPS Kakenhi Grant
number JP15K21046 from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
5
K
2
1
0
4
6)
Acknowledgment
We thank Mr. Shono Ichihara (Shizuoka University) for partial sup-
port of this research.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–D